Loading…
Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart
A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall o...
Saved in:
Published in: | Advances in civil engineering 2019-01, Vol.2019 (2019), p.1-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3 |
container_end_page | 5 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Advances in civil engineering |
container_volume | 2019 |
creator | Demsic, Marija Jaguljnjak Lazarevic, Antonia Lazarevic, Damir Dvornik, Josip |
description | A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall orthogonalities between various vectors from distant steps. This method is more stable than CG, and restarting techniques are not required. As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily. |
doi_str_mv | 10.1155/2019/7527590 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_388f2be965094870b50c98ed96355d49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_388f2be965094870b50c98ed96355d49</doaj_id><sourcerecordid>2212646941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsGhvniXgUdcm2U02OUrRWvADpJ5DNpltU-rGZrMW_3tTV_ToacLkx5s387LsjOBrQhibUEzkpGK0YhIfZCPCRZULLMvD37fgx9m461yNy7KiglIyyhZPvg1g-tC5D0C329596A20EfkGxRWgqW_X_VJHQLOgrdv_PEJceYt2LpU-flNPABZFj16gizrE0-yo0ZsOxj_1JHu9u11M7_OH59l8evOQG4ZpzI1sNNOWGKiJrqUFwjWh2NhC4lII4BLzZJ0wYwrODDBWWVLpusCFNg1AcZLNB13r9Vq9B_emw6fy2qnvhg9Lldw4swFVCNHQGiRn6SSiwjXDRgqwkheM2VImrYtB6z34bZ_2UGvfhzbZV-lQlJdcliRRVwNlgu-6AM3vVILVPga1j0H9xJDwywFfudbqnfuPPh9oSAw0-o8mpMJCFF_6LpAf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212646941</pqid></control><display><type>article</type><title>Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><creator>Demsic, Marija ; Jaguljnjak Lazarevic, Antonia ; Lazarevic, Damir ; Dvornik, Josip</creator><contributor>Rizos, Dimitris ; Dimitris Rizos</contributor><creatorcontrib>Demsic, Marija ; Jaguljnjak Lazarevic, Antonia ; Lazarevic, Damir ; Dvornik, Josip ; Rizos, Dimitris ; Dimitris Rizos</creatorcontrib><description>A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall orthogonalities between various vectors from distant steps. This method is more stable than CG, and restarting techniques are not required. As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2019/7527590</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Applied mathematics ; Civil engineering ; Conjugate gradient method ; Conjugates ; Energy ; Iterative methods ; Linear algebra ; Linear equations ; Mathematical analysis ; Mathematical problems ; Matrix algebra ; Matrix methods ; Methods ; Multiplication ; Orthogonality ; Preconditioning ; Restarting ; Ritz method</subject><ispartof>Advances in civil engineering, 2019-01, Vol.2019 (2019), p.1-5</ispartof><rights>Copyright © 2019 Josip Dvornik et al.</rights><rights>Copyright © 2019 Josip Dvornik et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3</citedby><cites>FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3</cites><orcidid>0000-0003-0534-5860 ; 0000-0002-7439-719X ; 0000-0002-0620-9812 ; 0000-0001-6479-686X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2212646941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2212646941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><contributor>Rizos, Dimitris</contributor><contributor>Dimitris Rizos</contributor><creatorcontrib>Demsic, Marija</creatorcontrib><creatorcontrib>Jaguljnjak Lazarevic, Antonia</creatorcontrib><creatorcontrib>Lazarevic, Damir</creatorcontrib><creatorcontrib>Dvornik, Josip</creatorcontrib><title>Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart</title><title>Advances in civil engineering</title><description>A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall orthogonalities between various vectors from distant steps. This method is more stable than CG, and restarting techniques are not required. As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Civil engineering</subject><subject>Conjugate gradient method</subject><subject>Conjugates</subject><subject>Energy</subject><subject>Iterative methods</subject><subject>Linear algebra</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Multiplication</subject><subject>Orthogonality</subject><subject>Preconditioning</subject><subject>Restarting</subject><subject>Ritz method</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1LAzEQxRdRsGhvniXgUdcm2U02OUrRWvADpJ5DNpltU-rGZrMW_3tTV_ToacLkx5s387LsjOBrQhibUEzkpGK0YhIfZCPCRZULLMvD37fgx9m461yNy7KiglIyyhZPvg1g-tC5D0C329596A20EfkGxRWgqW_X_VJHQLOgrdv_PEJceYt2LpU-flNPABZFj16gizrE0-yo0ZsOxj_1JHu9u11M7_OH59l8evOQG4ZpzI1sNNOWGKiJrqUFwjWh2NhC4lII4BLzZJ0wYwrODDBWWVLpusCFNg1AcZLNB13r9Vq9B_emw6fy2qnvhg9Lldw4swFVCNHQGiRn6SSiwjXDRgqwkheM2VImrYtB6z34bZ_2UGvfhzbZV-lQlJdcliRRVwNlgu-6AM3vVILVPga1j0H9xJDwywFfudbqnfuPPh9oSAw0-o8mpMJCFF_6LpAf</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Demsic, Marija</creator><creator>Jaguljnjak Lazarevic, Antonia</creator><creator>Lazarevic, Damir</creator><creator>Dvornik, Josip</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0534-5860</orcidid><orcidid>https://orcid.org/0000-0002-7439-719X</orcidid><orcidid>https://orcid.org/0000-0002-0620-9812</orcidid><orcidid>https://orcid.org/0000-0001-6479-686X</orcidid></search><sort><creationdate>20190101</creationdate><title>Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart</title><author>Demsic, Marija ; Jaguljnjak Lazarevic, Antonia ; Lazarevic, Damir ; Dvornik, Josip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Civil engineering</topic><topic>Conjugate gradient method</topic><topic>Conjugates</topic><topic>Energy</topic><topic>Iterative methods</topic><topic>Linear algebra</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Multiplication</topic><topic>Orthogonality</topic><topic>Preconditioning</topic><topic>Restarting</topic><topic>Ritz method</topic><toplevel>online_resources</toplevel><creatorcontrib>Demsic, Marija</creatorcontrib><creatorcontrib>Jaguljnjak Lazarevic, Antonia</creatorcontrib><creatorcontrib>Lazarevic, Damir</creatorcontrib><creatorcontrib>Dvornik, Josip</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demsic, Marija</au><au>Jaguljnjak Lazarevic, Antonia</au><au>Lazarevic, Damir</au><au>Dvornik, Josip</au><au>Rizos, Dimitris</au><au>Dimitris Rizos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart</atitle><jtitle>Advances in civil engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall orthogonalities between various vectors from distant steps. This method is more stable than CG, and restarting techniques are not required. As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7527590</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0534-5860</orcidid><orcidid>https://orcid.org/0000-0002-7439-719X</orcidid><orcidid>https://orcid.org/0000-0002-0620-9812</orcidid><orcidid>https://orcid.org/0000-0001-6479-686X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8086 |
ispartof | Advances in civil engineering, 2019-01, Vol.2019 (2019), p.1-5 |
issn | 1687-8086 1687-8094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_388f2be965094870b50c98ed96355d49 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest) |
subjects | Algorithms Applied mathematics Civil engineering Conjugate gradient method Conjugates Energy Iterative methods Linear algebra Linear equations Mathematical analysis Mathematical problems Matrix algebra Matrix methods Methods Multiplication Orthogonality Preconditioning Restarting Ritz method |
title | Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonrecursive%20Equivalent%20of%20the%20Conjugate%20Gradient%20Method%20without%20the%20Need%20to%20Restart&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Demsic,%20Marija&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2019/7527590&rft_dat=%3Cproquest_doaj_%3E2212646941%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-c9fa5ad1ceb1ab9de16a120cd390488e690616815cc365ce557d17ab303acfee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212646941&rft_id=info:pmid/&rfr_iscdi=true |