Loading…
Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed
Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor...
Saved in:
Published in: | Energies (Basel) 2021-05, Vol.14 (10), p.2809 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43 |
container_end_page | |
container_issue | 10 |
container_start_page | 2809 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Breault, Ronald W. Weber, Justin |
description | Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature. |
doi_str_mv | 10.3390/en14102809 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3896e21da4e0474b86035f276556ca84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3896e21da4e0474b86035f276556ca84</doaj_id><sourcerecordid>2532453721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRsNRe_ARBb0I12dlskmMtthYEFfUcsvlTU-qmJruH-ulNbVHnMsPwm8d7TFGcE3wNIPCNbUlFcMmxOCoGRIh6TDCD43_zaTFKaYVzARAAGBTPL6rro-p8aNFUxbj17TIPG6V9t0UuRDSPod-gCXpSsfN6bRPyLVJo6qPu1_kw87N1743_sgbdWnNWnDi1TnZ06MPibXb3Or0fPzzOF9PJw1gD590YeK2VY6wpMeaqco4ZZ7jQllvBmkbQWgCtnLWaclwq3ggwlIFWVNeOmgqGxWKva4JayU30HypuZVBe_ixCXMqDYwlc1LYkRlUWV6xqeI2BupLVlGYTfKd1sdcKqfMy5exWv-vQtlZ3kmSACpGhyz20ieGzt6mTq9DHNmeUJYWyosBKkqmrPaVjSCla92uNYLl7k_x7E3wDThaCXQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532453721</pqid></control><display><type>article</type><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><source>Publicly Available Content Database</source><creator>Breault, Ronald W. ; Weber, Justin</creator><creatorcontrib>Breault, Ronald W. ; Weber, Justin ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><description>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14102809</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carrying capacity ; Chemical reactors ; circulating fluidized beds ; Correlation ; Density ; Fluidized beds ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ISO standards ; Reactors ; Redesign ; Regression analysis ; riser flows ; Saturation ; saturation carrying capacity ; Velocity</subject><ispartof>Energies (Basel), 2021-05, Vol.14 (10), p.2809</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</citedby><cites>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</cites><orcidid>0000-0002-5552-4050 ; 0000000255524050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532453721/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532453721?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,74998</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1843599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Breault, Ronald W.</creatorcontrib><creatorcontrib>Weber, Justin</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><title>Energies (Basel)</title><description>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</description><subject>Carrying capacity</subject><subject>Chemical reactors</subject><subject>circulating fluidized beds</subject><subject>Correlation</subject><subject>Density</subject><subject>Fluidized beds</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ISO standards</subject><subject>Reactors</subject><subject>Redesign</subject><subject>Regression analysis</subject><subject>riser flows</subject><subject>Saturation</subject><subject>saturation carrying capacity</subject><subject>Velocity</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRsNRe_ARBb0I12dlskmMtthYEFfUcsvlTU-qmJruH-ulNbVHnMsPwm8d7TFGcE3wNIPCNbUlFcMmxOCoGRIh6TDCD43_zaTFKaYVzARAAGBTPL6rro-p8aNFUxbj17TIPG6V9t0UuRDSPod-gCXpSsfN6bRPyLVJo6qPu1_kw87N1743_sgbdWnNWnDi1TnZ06MPibXb3Or0fPzzOF9PJw1gD590YeK2VY6wpMeaqco4ZZ7jQllvBmkbQWgCtnLWaclwq3ggwlIFWVNeOmgqGxWKva4JayU30HypuZVBe_ixCXMqDYwlc1LYkRlUWV6xqeI2BupLVlGYTfKd1sdcKqfMy5exWv-vQtlZ3kmSACpGhyz20ieGzt6mTq9DHNmeUJYWyosBKkqmrPaVjSCla92uNYLl7k_x7E3wDThaCXQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Breault, Ronald W.</creator><creator>Weber, Justin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5552-4050</orcidid><orcidid>https://orcid.org/0000000255524050</orcidid></search><sort><creationdate>20210513</creationdate><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><author>Breault, Ronald W. ; Weber, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrying capacity</topic><topic>Chemical reactors</topic><topic>circulating fluidized beds</topic><topic>Correlation</topic><topic>Density</topic><topic>Fluidized beds</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ISO standards</topic><topic>Reactors</topic><topic>Redesign</topic><topic>Regression analysis</topic><topic>riser flows</topic><topic>Saturation</topic><topic>saturation carrying capacity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breault, Ronald W.</creatorcontrib><creatorcontrib>Weber, Justin</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breault, Ronald W.</au><au>Weber, Justin</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</atitle><jtitle>Energies (Basel)</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>2809</spage><pages>2809-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14102809</doi><orcidid>https://orcid.org/0000-0002-5552-4050</orcidid><orcidid>https://orcid.org/0000000255524050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-05, Vol.14 (10), p.2809 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3896e21da4e0474b86035f276556ca84 |
source | Publicly Available Content Database |
subjects | Carrying capacity Chemical reactors circulating fluidized beds Correlation Density Fluidized beds INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ISO standards Reactors Redesign Regression analysis riser flows Saturation saturation carrying capacity Velocity |
title | Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturation%20Carrying%20Capacity%20for%20Group%20A%20Particles%20in%20a%20Circulating%20Fluidized%20Bed&rft.jtitle=Energies%20(Basel)&rft.au=Breault,%20Ronald%20W.&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR%20(United%20States)&rft.date=2021-05-13&rft.volume=14&rft.issue=10&rft.spage=2809&rft.pages=2809-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14102809&rft_dat=%3Cproquest_doaj_%3E2532453721%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532453721&rft_id=info:pmid/&rfr_iscdi=true |