Loading…

Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed

Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-05, Vol.14 (10), p.2809
Main Authors: Breault, Ronald W., Weber, Justin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43
cites cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43
container_end_page
container_issue 10
container_start_page 2809
container_title Energies (Basel)
container_volume 14
creator Breault, Ronald W.
Weber, Justin
description Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.
doi_str_mv 10.3390/en14102809
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3896e21da4e0474b86035f276556ca84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3896e21da4e0474b86035f276556ca84</doaj_id><sourcerecordid>2532453721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRsNRe_ARBb0I12dlskmMtthYEFfUcsvlTU-qmJruH-ulNbVHnMsPwm8d7TFGcE3wNIPCNbUlFcMmxOCoGRIh6TDCD43_zaTFKaYVzARAAGBTPL6rro-p8aNFUxbj17TIPG6V9t0UuRDSPod-gCXpSsfN6bRPyLVJo6qPu1_kw87N1743_sgbdWnNWnDi1TnZ06MPibXb3Or0fPzzOF9PJw1gD590YeK2VY6wpMeaqco4ZZ7jQllvBmkbQWgCtnLWaclwq3ggwlIFWVNeOmgqGxWKva4JayU30HypuZVBe_ixCXMqDYwlc1LYkRlUWV6xqeI2BupLVlGYTfKd1sdcKqfMy5exWv-vQtlZ3kmSACpGhyz20ieGzt6mTq9DHNmeUJYWyosBKkqmrPaVjSCla92uNYLl7k_x7E3wDThaCXQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532453721</pqid></control><display><type>article</type><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><source>Publicly Available Content Database</source><creator>Breault, Ronald W. ; Weber, Justin</creator><creatorcontrib>Breault, Ronald W. ; Weber, Justin ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><description>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14102809</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carrying capacity ; Chemical reactors ; circulating fluidized beds ; Correlation ; Density ; Fluidized beds ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ISO standards ; Reactors ; Redesign ; Regression analysis ; riser flows ; Saturation ; saturation carrying capacity ; Velocity</subject><ispartof>Energies (Basel), 2021-05, Vol.14 (10), p.2809</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</citedby><cites>FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</cites><orcidid>0000-0002-5552-4050 ; 0000000255524050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532453721/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532453721?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,74998</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1843599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Breault, Ronald W.</creatorcontrib><creatorcontrib>Weber, Justin</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><title>Energies (Basel)</title><description>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</description><subject>Carrying capacity</subject><subject>Chemical reactors</subject><subject>circulating fluidized beds</subject><subject>Correlation</subject><subject>Density</subject><subject>Fluidized beds</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ISO standards</subject><subject>Reactors</subject><subject>Redesign</subject><subject>Regression analysis</subject><subject>riser flows</subject><subject>Saturation</subject><subject>saturation carrying capacity</subject><subject>Velocity</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRsNRe_ARBb0I12dlskmMtthYEFfUcsvlTU-qmJruH-ulNbVHnMsPwm8d7TFGcE3wNIPCNbUlFcMmxOCoGRIh6TDCD43_zaTFKaYVzARAAGBTPL6rro-p8aNFUxbj17TIPG6V9t0UuRDSPod-gCXpSsfN6bRPyLVJo6qPu1_kw87N1743_sgbdWnNWnDi1TnZ06MPibXb3Or0fPzzOF9PJw1gD590YeK2VY6wpMeaqco4ZZ7jQllvBmkbQWgCtnLWaclwq3ggwlIFWVNeOmgqGxWKva4JayU30HypuZVBe_ixCXMqDYwlc1LYkRlUWV6xqeI2BupLVlGYTfKd1sdcKqfMy5exWv-vQtlZ3kmSACpGhyz20ieGzt6mTq9DHNmeUJYWyosBKkqmrPaVjSCla92uNYLl7k_x7E3wDThaCXQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Breault, Ronald W.</creator><creator>Weber, Justin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5552-4050</orcidid><orcidid>https://orcid.org/0000000255524050</orcidid></search><sort><creationdate>20210513</creationdate><title>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</title><author>Breault, Ronald W. ; Weber, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrying capacity</topic><topic>Chemical reactors</topic><topic>circulating fluidized beds</topic><topic>Correlation</topic><topic>Density</topic><topic>Fluidized beds</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ISO standards</topic><topic>Reactors</topic><topic>Redesign</topic><topic>Regression analysis</topic><topic>riser flows</topic><topic>Saturation</topic><topic>saturation carrying capacity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breault, Ronald W.</creatorcontrib><creatorcontrib>Weber, Justin</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breault, Ronald W.</au><au>Weber, Justin</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed</atitle><jtitle>Energies (Basel)</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>2809</spage><pages>2809-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14102809</doi><orcidid>https://orcid.org/0000-0002-5552-4050</orcidid><orcidid>https://orcid.org/0000000255524050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-05, Vol.14 (10), p.2809
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3896e21da4e0474b86035f276556ca84
source Publicly Available Content Database
subjects Carrying capacity
Chemical reactors
circulating fluidized beds
Correlation
Density
Fluidized beds
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ISO standards
Reactors
Redesign
Regression analysis
riser flows
Saturation
saturation carrying capacity
Velocity
title Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturation%20Carrying%20Capacity%20for%20Group%20A%20Particles%20in%20a%20Circulating%20Fluidized%20Bed&rft.jtitle=Energies%20(Basel)&rft.au=Breault,%20Ronald%20W.&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR%20(United%20States)&rft.date=2021-05-13&rft.volume=14&rft.issue=10&rft.spage=2809&rft.pages=2809-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14102809&rft_dat=%3Cproquest_doaj_%3E2532453721%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-386caf77b2008a4ff7dfd89ce8e97bb9569354feec5802a8b93d573ca5c6f5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532453721&rft_id=info:pmid/&rfr_iscdi=true