Loading…

Long term in-vivo studies of a photo-oxidized bovine osteochondral transplant in sheep

Articular cartilage has limited capacity to repair. Defects greater than 3 mm heal with formation of inferior fibrous cartilage. Therefore, many attempts have been made to find the ideal graft for larger cartilage lesions. Different grafts, such as untreated or cryopreserved osteochondral transplant...

Full description

Saved in:
Bibliographic Details
Published in:BMC musculoskeletal disorders 2001-11, Vol.2 (1), p.9-9, Article 9
Main Authors: Akens, M K, von Rechenberg, B, Bittmann, P, Nadler, D, Zlinszky, K, Auer, J A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Articular cartilage has limited capacity to repair. Defects greater than 3 mm heal with formation of inferior fibrous cartilage. Therefore, many attempts have been made to find the ideal graft for larger cartilage lesions. Different grafts, such as untreated or cryopreserved osteochondral transplants, have been used with variable success. Photo-oxidized osteochondral grafts were implanted in both femoral condyles of one ovine knee. Untreated xenogeneic and autogeneic grafts served as controls. Three groups of 8 sheep each were formed and they were sacrificed 6, 12 or 18 months after surgery. The macroscopic evaluation of the condyle and graft showed a well-maintained cartilage surface in most grafts at all time points. However, the host cartilage matrix deteriorated considerably in all xenogeneic, most autogeneic and fewer of the photo-oxidized grafts at 12 and 18 months, respectively. The blue colour of the photo-oxidized grafts resulting from the process of photo-oxidation was visible in all grafts at 6 months, had diminished at 12 months and had completely disappeared at 18 months after surgery. Histologically a loss of matrix staining was almost never noticed in untreated xenografts, transiently at 6 months in photo-oxidized grafts and increased at 12 and 18 months. Fusion between graft and host cartilage could be seen in photo-oxidized grafts at 12 and 18 months, but was never seen in autografts and xenografts. The photo-oxidation of osteochondral grafts and its use as transplant appears to have a beneficial effect on cartilage and bone remodelling. Osteochondral grafts pre-treated with photo-oxidation may be considered for articular cartilage replacement and therefore may delay artificial joint replacements in human patients.
ISSN:1471-2474
1471-2474
DOI:10.1186/1471-2474-2-9