Loading…
Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting
The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, mangan...
Saved in:
Published in: | Journal of advanced veterinary and animal research 2022-03, Vol.9 (1), p.19-32 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493 |
---|---|
cites | |
container_end_page | 32 |
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of advanced veterinary and animal research |
container_volume | 9 |
creator | Paul, Parag Kumar Al Azad, Salauddin Rahman, Mohammad Habibur Farjana, Mithila Uddin, Muhammad Ramiz Dey, Dipta Mahmud, Shafi Ema, Tanzila Ismail Biswas, Partha Anjum, Maliha Akhi, Ozifatun Jannat Ahmed, Shahlaa Zernaz |
description | The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels.
The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (
), molecular surface area (
), root-mean-square fluctuation (
), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (
) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis.
Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes.
The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way. |
doi_str_mv | 10.5455/javar.2022.i565 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba</doaj_id><sourcerecordid>2642952673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</originalsourceid><addsrcrecordid>eNpdkk9v3CAQxa2qVROlOfdWIfXSy24AG2P3UCla9U-kSL20ZzTGg5cVC1uwI22_V79fIZtGSU_A8OPxZvSq6i2ja9EIcbWDO4hrTjlfW9GKF9U5rxlbScnoyyf7s-oypR2llAlGJe9eV2e1aBrBOD2v_mxghiE4q8khBmOd9RMJhiR0qGd7hwT97-MeE7GezFskCbTeQrTGapht8AX2wa9MCCNxdvJBo3OLCwnJAeKcCjDYsIdUNOZAzOJ1eQmO4GgHlzWXCWIi4MdCosc4HT-Sa1_-TNmSDqWe_aVDMeWnN9UrAy7h5cN6Uf388vnH5tvq9vvXm8317Uo3nZxXY1sPomZgIB-bThtE3sqWm5HqhjM2SC01cECOwgjOkbWmabjUvR573vT1RXVz0h0D7NQh2j3Eowpg1X0hxEnlFq12qOoOBsakNAP2Deuxk5oZWjM9MC7bAbLWp5PWYRn2OGr0cwT3TPT5jbdbNYU71fWd6DqZBT48CMTwa8E0q71NZdjgMSxJ8VbUvG1bKTL6_j90F5aYJ16ohvcij6HO1NWJ0nmyKaJ5NMOoKglT9wlTJWGqJCy_ePe0h0f-X57qv4WS0o8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642952673</pqid></control><display><type>article</type><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</creator><creatorcontrib>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</creatorcontrib><description>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels.
The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (
), molecular surface area (
), root-mean-square fluctuation (
), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (
) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis.
Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes.
The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</description><identifier>ISSN: 2311-7710</identifier><identifier>EISSN: 2311-7710</identifier><identifier>DOI: 10.5455/javar.2022.i565</identifier><identifier>PMID: 35445120</identifier><language>eng</language><publisher>Bangladesh: Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</publisher><subject>Agricultural wastes ; Algorithms ; Alternative energy sources ; Bioconversion ; Biodegradation ; Biodiesel fuels ; Biofuels ; Biomass ; Bioprospecting ; catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation ; Catalysis ; Catalytic activity ; Cellulase ; Cellulose ; Data mining ; Endoglucanase ; Energy ; Energy levels ; Energy resources ; Enzymatic activity ; Enzyme activity ; Enzymes ; Fermentation ; Food ; Food sources ; Glucose ; Hemicellulose ; Hunger ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Lignin ; Lignin peroxidase ; Lignocellulose ; Manganese ; Manganese peroxidase ; Melanocarpus albomyces ; Molecular dynamics ; Optimization ; Original ; Population ; Renewable energy ; Renewable resources ; Simulation ; Software ; Substrates ; Sugar ; Surface area ; Wastes</subject><ispartof>Journal of advanced veterinary and animal research, 2022-03, Vol.9 (1), p.19-32</ispartof><rights>Copyright: © Journal of Advanced Veterinary and Animal Research.</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © Journal of Advanced Veterinary and Animal Research 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642952673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642952673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35445120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Parag Kumar</creatorcontrib><creatorcontrib>Al Azad, Salauddin</creatorcontrib><creatorcontrib>Rahman, Mohammad Habibur</creatorcontrib><creatorcontrib>Farjana, Mithila</creatorcontrib><creatorcontrib>Uddin, Muhammad Ramiz</creatorcontrib><creatorcontrib>Dey, Dipta</creatorcontrib><creatorcontrib>Mahmud, Shafi</creatorcontrib><creatorcontrib>Ema, Tanzila Ismail</creatorcontrib><creatorcontrib>Biswas, Partha</creatorcontrib><creatorcontrib>Anjum, Maliha</creatorcontrib><creatorcontrib>Akhi, Ozifatun Jannat</creatorcontrib><creatorcontrib>Ahmed, Shahlaa Zernaz</creatorcontrib><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><title>Journal of advanced veterinary and animal research</title><addtitle>J Adv Vet Anim Res</addtitle><description>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels.
The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (
), molecular surface area (
), root-mean-square fluctuation (
), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (
) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis.
Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes.
The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</description><subject>Agricultural wastes</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Bioconversion</subject><subject>Biodegradation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Bioprospecting</subject><subject>catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Data mining</subject><subject>Endoglucanase</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Energy resources</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Food</subject><subject>Food sources</subject><subject>Glucose</subject><subject>Hemicellulose</subject><subject>Hunger</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Lignin</subject><subject>Lignin peroxidase</subject><subject>Lignocellulose</subject><subject>Manganese</subject><subject>Manganese peroxidase</subject><subject>Melanocarpus albomyces</subject><subject>Molecular dynamics</subject><subject>Optimization</subject><subject>Original</subject><subject>Population</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Simulation</subject><subject>Software</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Surface area</subject><subject>Wastes</subject><issn>2311-7710</issn><issn>2311-7710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9v3CAQxa2qVROlOfdWIfXSy24AG2P3UCla9U-kSL20ZzTGg5cVC1uwI22_V79fIZtGSU_A8OPxZvSq6i2ja9EIcbWDO4hrTjlfW9GKF9U5rxlbScnoyyf7s-oypR2llAlGJe9eV2e1aBrBOD2v_mxghiE4q8khBmOd9RMJhiR0qGd7hwT97-MeE7GezFskCbTeQrTGapht8AX2wa9MCCNxdvJBo3OLCwnJAeKcCjDYsIdUNOZAzOJ1eQmO4GgHlzWXCWIi4MdCosc4HT-Sa1_-TNmSDqWe_aVDMeWnN9UrAy7h5cN6Uf388vnH5tvq9vvXm8317Uo3nZxXY1sPomZgIB-bThtE3sqWm5HqhjM2SC01cECOwgjOkbWmabjUvR573vT1RXVz0h0D7NQh2j3Eowpg1X0hxEnlFq12qOoOBsakNAP2Deuxk5oZWjM9MC7bAbLWp5PWYRn2OGr0cwT3TPT5jbdbNYU71fWd6DqZBT48CMTwa8E0q71NZdjgMSxJ8VbUvG1bKTL6_j90F5aYJ16ohvcij6HO1NWJ0nmyKaJ5NMOoKglT9wlTJWGqJCy_ePe0h0f-X57qv4WS0o8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Paul, Parag Kumar</creator><creator>Al Azad, Salauddin</creator><creator>Rahman, Mohammad Habibur</creator><creator>Farjana, Mithila</creator><creator>Uddin, Muhammad Ramiz</creator><creator>Dey, Dipta</creator><creator>Mahmud, Shafi</creator><creator>Ema, Tanzila Ismail</creator><creator>Biswas, Partha</creator><creator>Anjum, Maliha</creator><creator>Akhi, Ozifatun Jannat</creator><creator>Ahmed, Shahlaa Zernaz</creator><general>Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</general><general>A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET)</general><general>Network for the Veterinarians of Bangladesh</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220301</creationdate><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><author>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural wastes</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Bioconversion</topic><topic>Biodegradation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Bioprospecting</topic><topic>catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Data mining</topic><topic>Endoglucanase</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Energy resources</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Food</topic><topic>Food sources</topic><topic>Glucose</topic><topic>Hemicellulose</topic><topic>Hunger</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Lignin</topic><topic>Lignin peroxidase</topic><topic>Lignocellulose</topic><topic>Manganese</topic><topic>Manganese peroxidase</topic><topic>Melanocarpus albomyces</topic><topic>Molecular dynamics</topic><topic>Optimization</topic><topic>Original</topic><topic>Population</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Simulation</topic><topic>Software</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Surface area</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Parag Kumar</creatorcontrib><creatorcontrib>Al Azad, Salauddin</creatorcontrib><creatorcontrib>Rahman, Mohammad Habibur</creatorcontrib><creatorcontrib>Farjana, Mithila</creatorcontrib><creatorcontrib>Uddin, Muhammad Ramiz</creatorcontrib><creatorcontrib>Dey, Dipta</creatorcontrib><creatorcontrib>Mahmud, Shafi</creatorcontrib><creatorcontrib>Ema, Tanzila Ismail</creatorcontrib><creatorcontrib>Biswas, Partha</creatorcontrib><creatorcontrib>Anjum, Maliha</creatorcontrib><creatorcontrib>Akhi, Ozifatun Jannat</creatorcontrib><creatorcontrib>Ahmed, Shahlaa Zernaz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced veterinary and animal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Parag Kumar</au><au>Al Azad, Salauddin</au><au>Rahman, Mohammad Habibur</au><au>Farjana, Mithila</au><au>Uddin, Muhammad Ramiz</au><au>Dey, Dipta</au><au>Mahmud, Shafi</au><au>Ema, Tanzila Ismail</au><au>Biswas, Partha</au><au>Anjum, Maliha</au><au>Akhi, Ozifatun Jannat</au><au>Ahmed, Shahlaa Zernaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</atitle><jtitle>Journal of advanced veterinary and animal research</jtitle><addtitle>J Adv Vet Anim Res</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>19</spage><epage>32</epage><pages>19-32</pages><issn>2311-7710</issn><eissn>2311-7710</eissn><abstract>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels.
The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (
), molecular surface area (
), root-mean-square fluctuation (
), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (
) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis.
Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes.
The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</abstract><cop>Bangladesh</cop><pub>Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</pub><pmid>35445120</pmid><doi>10.5455/javar.2022.i565</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-7710 |
ispartof | Journal of advanced veterinary and animal research, 2022-03, Vol.9 (1), p.19-32 |
issn | 2311-7710 2311-7710 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Agricultural wastes Algorithms Alternative energy sources Bioconversion Biodegradation Biodiesel fuels Biofuels Biomass Bioprospecting catabolic profiling enzymatic hydrolysis lignocellulose biomass saccharification functional edible sugars biofuel molecular dynamic simulation Catalysis Catalytic activity Cellulase Cellulose Data mining Endoglucanase Energy Energy levels Energy resources Enzymatic activity Enzyme activity Enzymes Fermentation Food Food sources Glucose Hemicellulose Hunger Hydrogen bonding Hydrogen bonds Hydrophobicity Lignin Lignin peroxidase Lignocellulose Manganese Manganese peroxidase Melanocarpus albomyces Molecular dynamics Optimization Original Population Renewable energy Renewable resources Simulation Software Substrates Sugar Surface area Wastes |
title | Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catabolic%20profiling%20of%20selective%20enzymes%20in%20the%20saccharification%20of%20non-food%20lignocellulose%20parts%20of%20biomass%20into%20functional%20edible%20sugars%20and%20bioenergy:%20An%20in%20silico%20bioprospecting&rft.jtitle=Journal%20of%20advanced%20veterinary%20and%20animal%20research&rft.au=Paul,%20Parag%20Kumar&rft.date=2022-03-01&rft.volume=9&rft.issue=1&rft.spage=19&rft.epage=32&rft.pages=19-32&rft.issn=2311-7710&rft.eissn=2311-7710&rft_id=info:doi/10.5455/javar.2022.i565&rft_dat=%3Cproquest_doaj_%3E2642952673%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642952673&rft_id=info:pmid/35445120&rfr_iscdi=true |