Loading…

Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting

The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, mangan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced veterinary and animal research 2022-03, Vol.9 (1), p.19-32
Main Authors: Paul, Parag Kumar, Al Azad, Salauddin, Rahman, Mohammad Habibur, Farjana, Mithila, Uddin, Muhammad Ramiz, Dey, Dipta, Mahmud, Shafi, Ema, Tanzila Ismail, Biswas, Partha, Anjum, Maliha, Akhi, Ozifatun Jannat, Ahmed, Shahlaa Zernaz
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493
cites
container_end_page 32
container_issue 1
container_start_page 19
container_title Journal of advanced veterinary and animal research
container_volume 9
creator Paul, Parag Kumar
Al Azad, Salauddin
Rahman, Mohammad Habibur
Farjana, Mithila
Uddin, Muhammad Ramiz
Dey, Dipta
Mahmud, Shafi
Ema, Tanzila Ismail
Biswas, Partha
Anjum, Maliha
Akhi, Ozifatun Jannat
Ahmed, Shahlaa Zernaz
description The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation ( ), molecular surface area ( ), root-mean-square fluctuation ( ), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area ( ) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.
doi_str_mv 10.5455/javar.2022.i565
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba</doaj_id><sourcerecordid>2642952673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</originalsourceid><addsrcrecordid>eNpdkk9v3CAQxa2qVROlOfdWIfXSy24AG2P3UCla9U-kSL20ZzTGg5cVC1uwI22_V79fIZtGSU_A8OPxZvSq6i2ja9EIcbWDO4hrTjlfW9GKF9U5rxlbScnoyyf7s-oypR2llAlGJe9eV2e1aBrBOD2v_mxghiE4q8khBmOd9RMJhiR0qGd7hwT97-MeE7GezFskCbTeQrTGapht8AX2wa9MCCNxdvJBo3OLCwnJAeKcCjDYsIdUNOZAzOJ1eQmO4GgHlzWXCWIi4MdCosc4HT-Sa1_-TNmSDqWe_aVDMeWnN9UrAy7h5cN6Uf388vnH5tvq9vvXm8317Uo3nZxXY1sPomZgIB-bThtE3sqWm5HqhjM2SC01cECOwgjOkbWmabjUvR573vT1RXVz0h0D7NQh2j3Eowpg1X0hxEnlFq12qOoOBsakNAP2Deuxk5oZWjM9MC7bAbLWp5PWYRn2OGr0cwT3TPT5jbdbNYU71fWd6DqZBT48CMTwa8E0q71NZdjgMSxJ8VbUvG1bKTL6_j90F5aYJ16ohvcij6HO1NWJ0nmyKaJ5NMOoKglT9wlTJWGqJCy_ePe0h0f-X57qv4WS0o8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642952673</pqid></control><display><type>article</type><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</creator><creatorcontrib>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</creatorcontrib><description>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation ( ), molecular surface area ( ), root-mean-square fluctuation ( ), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area ( ) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</description><identifier>ISSN: 2311-7710</identifier><identifier>EISSN: 2311-7710</identifier><identifier>DOI: 10.5455/javar.2022.i565</identifier><identifier>PMID: 35445120</identifier><language>eng</language><publisher>Bangladesh: Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</publisher><subject>Agricultural wastes ; Algorithms ; Alternative energy sources ; Bioconversion ; Biodegradation ; Biodiesel fuels ; Biofuels ; Biomass ; Bioprospecting ; catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation ; Catalysis ; Catalytic activity ; Cellulase ; Cellulose ; Data mining ; Endoglucanase ; Energy ; Energy levels ; Energy resources ; Enzymatic activity ; Enzyme activity ; Enzymes ; Fermentation ; Food ; Food sources ; Glucose ; Hemicellulose ; Hunger ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Lignin ; Lignin peroxidase ; Lignocellulose ; Manganese ; Manganese peroxidase ; Melanocarpus albomyces ; Molecular dynamics ; Optimization ; Original ; Population ; Renewable energy ; Renewable resources ; Simulation ; Software ; Substrates ; Sugar ; Surface area ; Wastes</subject><ispartof>Journal of advanced veterinary and animal research, 2022-03, Vol.9 (1), p.19-32</ispartof><rights>Copyright: © Journal of Advanced Veterinary and Animal Research.</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © Journal of Advanced Veterinary and Animal Research 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642952673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642952673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35445120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Parag Kumar</creatorcontrib><creatorcontrib>Al Azad, Salauddin</creatorcontrib><creatorcontrib>Rahman, Mohammad Habibur</creatorcontrib><creatorcontrib>Farjana, Mithila</creatorcontrib><creatorcontrib>Uddin, Muhammad Ramiz</creatorcontrib><creatorcontrib>Dey, Dipta</creatorcontrib><creatorcontrib>Mahmud, Shafi</creatorcontrib><creatorcontrib>Ema, Tanzila Ismail</creatorcontrib><creatorcontrib>Biswas, Partha</creatorcontrib><creatorcontrib>Anjum, Maliha</creatorcontrib><creatorcontrib>Akhi, Ozifatun Jannat</creatorcontrib><creatorcontrib>Ahmed, Shahlaa Zernaz</creatorcontrib><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><title>Journal of advanced veterinary and animal research</title><addtitle>J Adv Vet Anim Res</addtitle><description>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation ( ), molecular surface area ( ), root-mean-square fluctuation ( ), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area ( ) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</description><subject>Agricultural wastes</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Bioconversion</subject><subject>Biodegradation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Bioprospecting</subject><subject>catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Data mining</subject><subject>Endoglucanase</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Energy resources</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Food</subject><subject>Food sources</subject><subject>Glucose</subject><subject>Hemicellulose</subject><subject>Hunger</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Lignin</subject><subject>Lignin peroxidase</subject><subject>Lignocellulose</subject><subject>Manganese</subject><subject>Manganese peroxidase</subject><subject>Melanocarpus albomyces</subject><subject>Molecular dynamics</subject><subject>Optimization</subject><subject>Original</subject><subject>Population</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Simulation</subject><subject>Software</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Surface area</subject><subject>Wastes</subject><issn>2311-7710</issn><issn>2311-7710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9v3CAQxa2qVROlOfdWIfXSy24AG2P3UCla9U-kSL20ZzTGg5cVC1uwI22_V79fIZtGSU_A8OPxZvSq6i2ja9EIcbWDO4hrTjlfW9GKF9U5rxlbScnoyyf7s-oypR2llAlGJe9eV2e1aBrBOD2v_mxghiE4q8khBmOd9RMJhiR0qGd7hwT97-MeE7GezFskCbTeQrTGapht8AX2wa9MCCNxdvJBo3OLCwnJAeKcCjDYsIdUNOZAzOJ1eQmO4GgHlzWXCWIi4MdCosc4HT-Sa1_-TNmSDqWe_aVDMeWnN9UrAy7h5cN6Uf388vnH5tvq9vvXm8317Uo3nZxXY1sPomZgIB-bThtE3sqWm5HqhjM2SC01cECOwgjOkbWmabjUvR573vT1RXVz0h0D7NQh2j3Eowpg1X0hxEnlFq12qOoOBsakNAP2Deuxk5oZWjM9MC7bAbLWp5PWYRn2OGr0cwT3TPT5jbdbNYU71fWd6DqZBT48CMTwa8E0q71NZdjgMSxJ8VbUvG1bKTL6_j90F5aYJ16ohvcij6HO1NWJ0nmyKaJ5NMOoKglT9wlTJWGqJCy_ePe0h0f-X57qv4WS0o8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Paul, Parag Kumar</creator><creator>Al Azad, Salauddin</creator><creator>Rahman, Mohammad Habibur</creator><creator>Farjana, Mithila</creator><creator>Uddin, Muhammad Ramiz</creator><creator>Dey, Dipta</creator><creator>Mahmud, Shafi</creator><creator>Ema, Tanzila Ismail</creator><creator>Biswas, Partha</creator><creator>Anjum, Maliha</creator><creator>Akhi, Ozifatun Jannat</creator><creator>Ahmed, Shahlaa Zernaz</creator><general>Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</general><general>A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET)</general><general>Network for the Veterinarians of Bangladesh</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220301</creationdate><title>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</title><author>Paul, Parag Kumar ; Al Azad, Salauddin ; Rahman, Mohammad Habibur ; Farjana, Mithila ; Uddin, Muhammad Ramiz ; Dey, Dipta ; Mahmud, Shafi ; Ema, Tanzila Ismail ; Biswas, Partha ; Anjum, Maliha ; Akhi, Ozifatun Jannat ; Ahmed, Shahlaa Zernaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural wastes</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Bioconversion</topic><topic>Biodegradation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Bioprospecting</topic><topic>catabolic profiling; enzymatic hydrolysis; lignocellulose biomass; saccharification; functional edible sugars; biofuel; molecular dynamic simulation</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Data mining</topic><topic>Endoglucanase</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Energy resources</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Food</topic><topic>Food sources</topic><topic>Glucose</topic><topic>Hemicellulose</topic><topic>Hunger</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Lignin</topic><topic>Lignin peroxidase</topic><topic>Lignocellulose</topic><topic>Manganese</topic><topic>Manganese peroxidase</topic><topic>Melanocarpus albomyces</topic><topic>Molecular dynamics</topic><topic>Optimization</topic><topic>Original</topic><topic>Population</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Simulation</topic><topic>Software</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Surface area</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Parag Kumar</creatorcontrib><creatorcontrib>Al Azad, Salauddin</creatorcontrib><creatorcontrib>Rahman, Mohammad Habibur</creatorcontrib><creatorcontrib>Farjana, Mithila</creatorcontrib><creatorcontrib>Uddin, Muhammad Ramiz</creatorcontrib><creatorcontrib>Dey, Dipta</creatorcontrib><creatorcontrib>Mahmud, Shafi</creatorcontrib><creatorcontrib>Ema, Tanzila Ismail</creatorcontrib><creatorcontrib>Biswas, Partha</creatorcontrib><creatorcontrib>Anjum, Maliha</creatorcontrib><creatorcontrib>Akhi, Ozifatun Jannat</creatorcontrib><creatorcontrib>Ahmed, Shahlaa Zernaz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced veterinary and animal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Parag Kumar</au><au>Al Azad, Salauddin</au><au>Rahman, Mohammad Habibur</au><au>Farjana, Mithila</au><au>Uddin, Muhammad Ramiz</au><au>Dey, Dipta</au><au>Mahmud, Shafi</au><au>Ema, Tanzila Ismail</au><au>Biswas, Partha</au><au>Anjum, Maliha</au><au>Akhi, Ozifatun Jannat</au><au>Ahmed, Shahlaa Zernaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting</atitle><jtitle>Journal of advanced veterinary and animal research</jtitle><addtitle>J Adv Vet Anim Res</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>19</spage><epage>32</epage><pages>19-32</pages><issn>2311-7710</issn><eissn>2311-7710</eissn><abstract>The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation ( ), molecular surface area ( ), root-mean-square fluctuation ( ), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area ( ) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.</abstract><cop>Bangladesh</cop><pub>Network for the Veterinarians of Bangladesh Bangladesh Agricultural Universityת Faculty of Veterinary Science</pub><pmid>35445120</pmid><doi>10.5455/javar.2022.i565</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-7710
ispartof Journal of advanced veterinary and animal research, 2022-03, Vol.9 (1), p.19-32
issn 2311-7710
2311-7710
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_38ab1177fbe9419e87c1f031cb1276ba
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Agricultural wastes
Algorithms
Alternative energy sources
Bioconversion
Biodegradation
Biodiesel fuels
Biofuels
Biomass
Bioprospecting
catabolic profiling
enzymatic hydrolysis
lignocellulose biomass
saccharification
functional edible sugars
biofuel
molecular dynamic simulation
Catalysis
Catalytic activity
Cellulase
Cellulose
Data mining
Endoglucanase
Energy
Energy levels
Energy resources
Enzymatic activity
Enzyme activity
Enzymes
Fermentation
Food
Food sources
Glucose
Hemicellulose
Hunger
Hydrogen bonding
Hydrogen bonds
Hydrophobicity
Lignin
Lignin peroxidase
Lignocellulose
Manganese
Manganese peroxidase
Melanocarpus albomyces
Molecular dynamics
Optimization
Original
Population
Renewable energy
Renewable resources
Simulation
Software
Substrates
Sugar
Surface area
Wastes
title Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catabolic%20profiling%20of%20selective%20enzymes%20in%20the%20saccharification%20of%20non-food%20lignocellulose%20parts%20of%20biomass%20into%20functional%20edible%20sugars%20and%20bioenergy:%20An%20in%20silico%20bioprospecting&rft.jtitle=Journal%20of%20advanced%20veterinary%20and%20animal%20research&rft.au=Paul,%20Parag%20Kumar&rft.date=2022-03-01&rft.volume=9&rft.issue=1&rft.spage=19&rft.epage=32&rft.pages=19-32&rft.issn=2311-7710&rft.eissn=2311-7710&rft_id=info:doi/10.5455/javar.2022.i565&rft_dat=%3Cproquest_doaj_%3E2642952673%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-d63b531afa48748cfee26762fd0c4211b7c7ca2ae2e5f522e16f4427c9cd92493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642952673&rft_id=info:pmid/35445120&rfr_iscdi=true