Loading…

General Switch-and-Stay Combing for Space Diversity over Rayleigh Fading Channels

Three multibranch switch-and-stay combining (MSSC) schemes are analyzed for Rayleigh fading channels, where different decision statistics for antenna switching (i.e., switch statistic) are used. Let a and r denote the fading factor and the received baseband signal of a diversity branch, respectively...

Full description

Saved in:
Bibliographic Details
Published in:International journal of antennas and propagation 2012-01, Vol.2012 (2012), p.1-9
Main Authors: Chau, Yawgeng A., Chen, Yao-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three multibranch switch-and-stay combining (MSSC) schemes are analyzed for Rayleigh fading channels, where different decision statistics for antenna switching (i.e., switch statistic) are used. Let a and r denote the fading factor and the received baseband signal of a diversity branch, respectively. In contrast to the traditional MSSC that uses the faded signal-to-noise ratio (SNR) of diversity branches as the corresponding switch statistic, to enhance the receiver performance, |r|, |ar|, and a new linear combination of a and |r| are used as switch statistics of the three MSSC schemes, respectively. For performance evaluation, the bit error rate (BER) of BPSK is derived for the three MSSC schemes over both independent-and-identical distributed (i.i.d.) and independent-and-nonidentical distributed (i.n.d.) Rayleigh fading channels. To pursue optimal performance, the locally optimal switch threshold (ST) of each MSSC scheme is obtained for general i.n.d. fading channels. In addition, the locally optimal ST becomes the globally optimal ST for i.i.d. channels. Numerical results based on the analysis and simulations are presented. In contrast to the MSSC over i.i.d. fading channels, we will show that the performance of MSSC schemes can be improved by increasing the number of branches, if i.n.d. channels are considered.
ISSN:1687-5869
1687-5877
DOI:10.1155/2012/717494