Loading…

Epigenetic Regulation of Genomic Stability by Vitamin C

DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC),...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics 2021-05, Vol.12, p.675780-675780
Main Authors: Brabson, John P, Leesang, Tiffany, Mohammad, Sofia, Cimmino, Luisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413
cites cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413
container_end_page 675780
container_issue
container_start_page 675780
container_title Frontiers in genetics
container_volume 12
creator Brabson, John P
Leesang, Tiffany
Mohammad, Sofia
Cimmino, Luisa
description DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
doi_str_mv 10.3389/fgene.2021.675780
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64</doaj_id><sourcerecordid>2531215841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMoKuoP8CI9etk1yaRpehFk0VUQBL-uYZpO10jbrG1X2H9v9kNxc5nwTubJm7yMnQs-BjD5VTWjlsaSSzHWWZoZvseOhdZqZKK0_29_xM76_pPHpXIAUIfsCBQXGaTZMctu534FGrxLnmm2qHHwoU1ClUypDU1UXwYsfO2HZVIsk3c_YOPbZHLKDiqsezrb1hP2dnf7OrkfPT5NHyY3jyOXghhGVGqosqKQOq0cCie0lI4XiAqEFiC14jkaR0WJYFyGFZQZlJpc6VyqlYAT9rDhlgE_7bzzDXZLG9DbtRC6mcUumq_JgiGJSnNppFQmd4ZT_ANulCKCSqvIut6w5ouiodJRO3RY70B3O63_sLPwbY2QuTA6Ai63gC58LagfbON7R3WNLYVFb2V8sxSpWfsWm6OuC33fUfV3jeB2lZ9d52dX-dlNfnHm4r-_v4nftOAHnxSWYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531215841</pqid></control><display><type>article</type><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><source>PubMed Central</source><creator>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</creator><creatorcontrib>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</creatorcontrib><description>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2021.675780</identifier><identifier>PMID: 34017357</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>5-hydroxymethylation (5hmC) ; DNA methylation (5mC) ; DNMT ; Genetics ; genomic stability ; TET ; vitamin C</subject><ispartof>Frontiers in genetics, 2021-05, Vol.12, p.675780-675780</ispartof><rights>Copyright © 2021 Brabson, Leesang, Mohammad and Cimmino.</rights><rights>Copyright © 2021 Brabson, Leesang, Mohammad and Cimmino. 2021 Brabson, Leesang, Mohammad and Cimmino</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</citedby><cites>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34017357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brabson, John P</creatorcontrib><creatorcontrib>Leesang, Tiffany</creatorcontrib><creatorcontrib>Mohammad, Sofia</creatorcontrib><creatorcontrib>Cimmino, Luisa</creatorcontrib><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</description><subject>5-hydroxymethylation (5hmC)</subject><subject>DNA methylation (5mC)</subject><subject>DNMT</subject><subject>Genetics</subject><subject>genomic stability</subject><subject>TET</subject><subject>vitamin C</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1LxDAQhoMoKuoP8CI9etk1yaRpehFk0VUQBL-uYZpO10jbrG1X2H9v9kNxc5nwTubJm7yMnQs-BjD5VTWjlsaSSzHWWZoZvseOhdZqZKK0_29_xM76_pPHpXIAUIfsCBQXGaTZMctu534FGrxLnmm2qHHwoU1ClUypDU1UXwYsfO2HZVIsk3c_YOPbZHLKDiqsezrb1hP2dnf7OrkfPT5NHyY3jyOXghhGVGqosqKQOq0cCie0lI4XiAqEFiC14jkaR0WJYFyGFZQZlJpc6VyqlYAT9rDhlgE_7bzzDXZLG9DbtRC6mcUumq_JgiGJSnNppFQmd4ZT_ANulCKCSqvIut6w5ouiodJRO3RY70B3O63_sLPwbY2QuTA6Ai63gC58LagfbON7R3WNLYVFb2V8sxSpWfsWm6OuC33fUfV3jeB2lZ9d52dX-dlNfnHm4r-_v4nftOAHnxSWYA</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Brabson, John P</creator><creator>Leesang, Tiffany</creator><creator>Mohammad, Sofia</creator><creator>Cimmino, Luisa</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210504</creationdate><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><author>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5-hydroxymethylation (5hmC)</topic><topic>DNA methylation (5mC)</topic><topic>DNMT</topic><topic>Genetics</topic><topic>genomic stability</topic><topic>TET</topic><topic>vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brabson, John P</creatorcontrib><creatorcontrib>Leesang, Tiffany</creatorcontrib><creatorcontrib>Mohammad, Sofia</creatorcontrib><creatorcontrib>Cimmino, Luisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brabson, John P</au><au>Leesang, Tiffany</au><au>Mohammad, Sofia</au><au>Cimmino, Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic Regulation of Genomic Stability by Vitamin C</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>12</volume><spage>675780</spage><epage>675780</epage><pages>675780-675780</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>34017357</pmid><doi>10.3389/fgene.2021.675780</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-8021
ispartof Frontiers in genetics, 2021-05, Vol.12, p.675780-675780
issn 1664-8021
1664-8021
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64
source PubMed Central
subjects 5-hydroxymethylation (5hmC)
DNA methylation (5mC)
DNMT
Genetics
genomic stability
TET
vitamin C
title Epigenetic Regulation of Genomic Stability by Vitamin C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20Regulation%20of%20Genomic%20Stability%20by%20Vitamin%20C&rft.jtitle=Frontiers%20in%20genetics&rft.au=Brabson,%20John%20P&rft.date=2021-05-04&rft.volume=12&rft.spage=675780&rft.epage=675780&rft.pages=675780-675780&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2021.675780&rft_dat=%3Cproquest_doaj_%3E2531215841%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531215841&rft_id=info:pmid/34017357&rfr_iscdi=true