Loading…
Epigenetic Regulation of Genomic Stability by Vitamin C
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe ) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC),...
Saved in:
Published in: | Frontiers in genetics 2021-05, Vol.12, p.675780-675780 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413 |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413 |
container_end_page | 675780 |
container_issue | |
container_start_page | 675780 |
container_title | Frontiers in genetics |
container_volume | 12 |
creator | Brabson, John P Leesang, Tiffany Mohammad, Sofia Cimmino, Luisa |
description | DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe
) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair. |
doi_str_mv | 10.3389/fgene.2021.675780 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64</doaj_id><sourcerecordid>2531215841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMoKuoP8CI9etk1yaRpehFk0VUQBL-uYZpO10jbrG1X2H9v9kNxc5nwTubJm7yMnQs-BjD5VTWjlsaSSzHWWZoZvseOhdZqZKK0_29_xM76_pPHpXIAUIfsCBQXGaTZMctu534FGrxLnmm2qHHwoU1ClUypDU1UXwYsfO2HZVIsk3c_YOPbZHLKDiqsezrb1hP2dnf7OrkfPT5NHyY3jyOXghhGVGqosqKQOq0cCie0lI4XiAqEFiC14jkaR0WJYFyGFZQZlJpc6VyqlYAT9rDhlgE_7bzzDXZLG9DbtRC6mcUumq_JgiGJSnNppFQmd4ZT_ANulCKCSqvIut6w5ouiodJRO3RY70B3O63_sLPwbY2QuTA6Ai63gC58LagfbON7R3WNLYVFb2V8sxSpWfsWm6OuC33fUfV3jeB2lZ9d52dX-dlNfnHm4r-_v4nftOAHnxSWYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531215841</pqid></control><display><type>article</type><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><source>PubMed Central</source><creator>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</creator><creatorcontrib>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</creatorcontrib><description>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe
) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2021.675780</identifier><identifier>PMID: 34017357</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>5-hydroxymethylation (5hmC) ; DNA methylation (5mC) ; DNMT ; Genetics ; genomic stability ; TET ; vitamin C</subject><ispartof>Frontiers in genetics, 2021-05, Vol.12, p.675780-675780</ispartof><rights>Copyright © 2021 Brabson, Leesang, Mohammad and Cimmino.</rights><rights>Copyright © 2021 Brabson, Leesang, Mohammad and Cimmino. 2021 Brabson, Leesang, Mohammad and Cimmino</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</citedby><cites>FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34017357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brabson, John P</creatorcontrib><creatorcontrib>Leesang, Tiffany</creatorcontrib><creatorcontrib>Mohammad, Sofia</creatorcontrib><creatorcontrib>Cimmino, Luisa</creatorcontrib><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe
) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</description><subject>5-hydroxymethylation (5hmC)</subject><subject>DNA methylation (5mC)</subject><subject>DNMT</subject><subject>Genetics</subject><subject>genomic stability</subject><subject>TET</subject><subject>vitamin C</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1LxDAQhoMoKuoP8CI9etk1yaRpehFk0VUQBL-uYZpO10jbrG1X2H9v9kNxc5nwTubJm7yMnQs-BjD5VTWjlsaSSzHWWZoZvseOhdZqZKK0_29_xM76_pPHpXIAUIfsCBQXGaTZMctu534FGrxLnmm2qHHwoU1ClUypDU1UXwYsfO2HZVIsk3c_YOPbZHLKDiqsezrb1hP2dnf7OrkfPT5NHyY3jyOXghhGVGqosqKQOq0cCie0lI4XiAqEFiC14jkaR0WJYFyGFZQZlJpc6VyqlYAT9rDhlgE_7bzzDXZLG9DbtRC6mcUumq_JgiGJSnNppFQmd4ZT_ANulCKCSqvIut6w5ouiodJRO3RY70B3O63_sLPwbY2QuTA6Ai63gC58LagfbON7R3WNLYVFb2V8sxSpWfsWm6OuC33fUfV3jeB2lZ9d52dX-dlNfnHm4r-_v4nftOAHnxSWYA</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Brabson, John P</creator><creator>Leesang, Tiffany</creator><creator>Mohammad, Sofia</creator><creator>Cimmino, Luisa</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210504</creationdate><title>Epigenetic Regulation of Genomic Stability by Vitamin C</title><author>Brabson, John P ; Leesang, Tiffany ; Mohammad, Sofia ; Cimmino, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5-hydroxymethylation (5hmC)</topic><topic>DNA methylation (5mC)</topic><topic>DNMT</topic><topic>Genetics</topic><topic>genomic stability</topic><topic>TET</topic><topic>vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brabson, John P</creatorcontrib><creatorcontrib>Leesang, Tiffany</creatorcontrib><creatorcontrib>Mohammad, Sofia</creatorcontrib><creatorcontrib>Cimmino, Luisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brabson, John P</au><au>Leesang, Tiffany</au><au>Mohammad, Sofia</au><au>Cimmino, Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic Regulation of Genomic Stability by Vitamin C</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>12</volume><spage>675780</spage><epage>675780</epage><pages>675780-675780</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe
) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>34017357</pmid><doi>10.3389/fgene.2021.675780</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-8021 |
ispartof | Frontiers in genetics, 2021-05, Vol.12, p.675780-675780 |
issn | 1664-8021 1664-8021 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_38e2a4602822489c80e1660844ee3f64 |
source | PubMed Central |
subjects | 5-hydroxymethylation (5hmC) DNA methylation (5mC) DNMT Genetics genomic stability TET vitamin C |
title | Epigenetic Regulation of Genomic Stability by Vitamin C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20Regulation%20of%20Genomic%20Stability%20by%20Vitamin%20C&rft.jtitle=Frontiers%20in%20genetics&rft.au=Brabson,%20John%20P&rft.date=2021-05-04&rft.volume=12&rft.spage=675780&rft.epage=675780&rft.pages=675780-675780&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2021.675780&rft_dat=%3Cproquest_doaj_%3E2531215841%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-ed63f7bb265fca1c1622c0baa43161326409a8cebda38c7af3d73d6ecdcc56413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531215841&rft_id=info:pmid/34017357&rfr_iscdi=true |