Loading…

Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer

Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-05, Vol.13 (1), p.2507-2507, Article 2507
Main Authors: Kim, Dahin, Ndaya, Dennis, Bosire, Reuben, Masese, Francis K., Li, Weixingyue, Thompson, Sarah M., Kagan, Cherie R., Murray, Christopher B., Kasi, Rajeswari M., Osuji, Chinedum O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials. Here, we report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence, using a magnetic field. We reveal that dispersion stability is greatly enhanced using polymeric, rather than small molecule, LCs and is considerably greater in the smectic phases of the resulting systems relative to the nematic phases. Aligned composites exhibit highly polarized emission that is readily manipulated by field-realignment. Such dynamic alignment of optically-active 2D nanomaterials may enable the development of programmable materials for photonic applications and the methodology can guide designs for anisotropic nanomaterial composites for a broad set of related nanomaterials. Liquid crystals (LC) are promising materials for the fabrication of reconfigurable arrays of 2D nanomaterials but it remains difficult to achieve stable dispersions of nanomaterials. Here, the authors report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence using a magnetic field.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30200-2