Loading…

Effect of Freezing Temperature on the Thermal, Rheological, and Gelatinization Properties of Freeze-Thaw-Dehydrated Potato Powder

To promote the application of freeze-thaw-dehydrated (FTD) potatoes and their gels, this study aimed to investigate the effects of freezing temperature on the physicochemical and gel properties of FTD potato powder and their correlation. The results revealed that, as the freezing temperature decreas...

Full description

Saved in:
Bibliographic Details
Published in:Gels 2024-11, Vol.10 (11), p.744
Main Authors: Duan, Xinyan, Zhang, Tingting, Liu, Qiannan, Zhang, Liang, Liu, Wei, Zhao, Ruixuan, Hu, Honghai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To promote the application of freeze-thaw-dehydrated (FTD) potatoes and their gels, this study aimed to investigate the effects of freezing temperature on the physicochemical and gel properties of FTD potato powder and their correlation. The results revealed that, as the freezing temperature decreased, the solubility exhibited an overall downwards trend resulting from soluble solids and amylose liberation. Owing to the better cell integrity at -20 °C, the solubility was greater than that of the other treatment groups. In contrast, the trough viscosity and melting enthalpy increased, and the final viscosity, and setback first increased but then decreased. Regarding the properties of the FTD potato powder gel, the storage modulus, loss modulus, hardness, adhesiveness, chewiness, and consistency first increased but then decreased with decreasing freezing temperature. At a moderate freezing temperature (-20 °C), the solubility and stability of the FTD potato powder were well maintained, and the final viscosity, setback, and hardness reached their highest values. Correlation analysis revealed that, with decreasing freezing temperature, the amount of FTD potato powder initially increased, followed by a decrease in the final viscosity and setback. This trend was positively correlated with the hardness of the FTD potato gel (r = 0.98, r = 0.93).
ISSN:2310-2861
2310-2861
DOI:10.3390/gels10110744