Loading…
Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China
Particulate nitrate (NO3-) not only influences regional climates but also contributes to the acidification of terrestrial and aquatic ecosystems. In 2016 and 2017, four intensive online measurements of water-soluble ions in PM2.5 were conducted in Nanjing City in order to investigate the potential f...
Saved in:
Published in: | Atmospheric chemistry and physics 2020-04, Vol.20 (6), p.3999-4011 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particulate nitrate (NO3-) not only influences regional climates but also contributes to the acidification of terrestrial and aquatic ecosystems. In 2016 and 2017, four intensive online measurements of water-soluble ions in PM2.5 were conducted in Nanjing City in order to investigate the potential formation mechanisms of particulate nitrate. During the sampling periods, NO3- was the predominant species, accounting approximately for 35 % of the total water-soluble inorganic ions, followed by SO42- (33 %) and NH4+ (24 %). Significant enhancements of nitrate aerosols in terms of both absolute concentrations and relative abundances suggested that NO3- was a major contributing species to high-PM2.5 events (hourly PM2.5≥150 µg m-3). High NO3- concentrations mainly occurred underNH4+-rich conditions, implying that the formation of nitrate aerosols in Nanjing involved NH3. During the high-PM2.5 events, the nitrogen conversion ratios (Fn) were positively correlated with the aerosol liquid water content (ALWC; R>0.72 and p |
---|---|
ISSN: | 1680-7316 1680-7324 |
DOI: | 10.5194/acp-20-3999-2020 |