Loading…

Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography

Asynchronous calibration quantitative computed tomography (QCT) is a new tool that allows the quantification of bone mineral density (BMD) without the use of a calibration phantom during scanning; however, this tool is not fully validated for clinical use. We used the European spine phantom (ESP) wi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-07, Vol.7 (1), p.6284-7, Article 6284
Main Authors: Wang, Ling, Su, Yongbin, Wang, Qianqian, Duanmu, Yangyang, Yang, Minghui, Yi, Chen, Cheng, Xiaoguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Asynchronous calibration quantitative computed tomography (QCT) is a new tool that allows the quantification of bone mineral density (BMD) without the use of a calibration phantom during scanning; however, this tool is not fully validated for clinical use. We used the European spine phantom (ESP) with repositioning during scanning and assessed the accuracy and short-term reproducibility of asynchronous QCT. Intra-scanner and intra-observer precision were each calculated as the root mean square of the standard deviation (RMSSD) and the coefficient of variation (CV-RMSSD). We also compared asynchronous and conventional QCT results in 50 clinical subjects. The accuracy of asynchronous QCT for three ESP vertebrae ranged from 1.4–6.7%, whereas intra-scanner precision for these vertebrae ranged from 0.53–0.91 mg/cc. Asynchronous QCT was most precise for a trabecular BMD of 100 mg/cc (CV-RMSSD = 0.2%). For intra-observer variability, overall precision error was smaller than 3%. In clinical subjects there was excellent agreement between the two calibration methods with correlation coefficients ranging from 0.96–0.99. A Bland–Altman analysis demonstrated that methodological differences depended on the magnitude of the BMD variable. Our findings indicate that the asynchronous QCT has good accuracy and precision for assessing trabecular BMD in the spine.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-06608-y