Loading…

Numerical investigation of acoustic streaming vortices in cylindrical tube arrays

Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and e...

Full description

Saved in:
Bibliographic Details
Published in:Open Physics 2024-05, Vol.22 (1), p.121768-40
Main Authors: Yang, Yanfeng, Liu, Chaolin, Xin, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-8ece435f865c2dc8f5fdd1186e0c2ef7e4e3fe211c44bb8d6db53d6bc740a0883
container_end_page 40
container_issue 1
container_start_page 121768
container_title Open Physics
container_volume 22
creator Yang, Yanfeng
Liu, Chaolin
Xin, Feng
description Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.
doi_str_mv 10.1515/phys-2024-0022
format article
fullrecord <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_395be72b22d547458bd7cf388d4bffc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_395be72b22d547458bd7cf388d4bffc3</doaj_id><sourcerecordid>10_1515_phys_2024_0022221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8ece435f865c2dc8f5fdd1186e0c2ef7e4e3fe211c44bb8d6db53d6bc740a0883</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhYMoWGq3rvMHUueZTJdSfBREEXQ9zONOTEkzZSap5N87MSJuXN3D4Z7DvV-WXWO0xhzzm-PHGAuCCCsQIuQsWxC6wQVnFT7_oy-zVYx7hBDmtGKELbLX5-EAoTGqzZvuBLFvatU3vsu9y5XxQzJMHvsA6tB0dX7yIRkQ03Juxrbp7JztBw25CkGN8Sq7cKqNsPqZy-z9_u5t-1g8vTzstrdPhaEc9YUAA4xyJ0puiDXCcWctxqIEZAi4ChhQBwRjw5jWwpZWc2pLbSqGFBKCLrPd3Gu92stjaA4qjNKrRn4bPtRSTce2IOmGa6iIJsQmCowLbSvjqBCWaecMTV3rucsEH2MA99uHkZz4yomvnPjKiW8KbObAp2p7CBbqMIxJyL0fQpfe_idICKZf5aaEAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical investigation of acoustic streaming vortices in cylindrical tube arrays</title><source>De Gruyter Open Access Journals</source><creator>Yang, Yanfeng ; Liu, Chaolin ; Xin, Feng</creator><creatorcontrib>Yang, Yanfeng ; Liu, Chaolin ; Xin, Feng</creatorcontrib><description>Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.</description><identifier>ISSN: 2391-5471</identifier><identifier>EISSN: 2391-5471</identifier><identifier>DOI: 10.1515/phys-2024-0022</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>acoustic Reynolds number ; acoustic streaming ; tube arrays ; vortex</subject><ispartof>Open Physics, 2024-05, Vol.22 (1), p.121768-40</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-8ece435f865c2dc8f5fdd1186e0c2ef7e4e3fe211c44bb8d6db53d6bc740a0883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/phys-2024-0022/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/phys-2024-0022/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,66907,68691</link.rule.ids></links><search><creatorcontrib>Yang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Chaolin</creatorcontrib><creatorcontrib>Xin, Feng</creatorcontrib><title>Numerical investigation of acoustic streaming vortices in cylindrical tube arrays</title><title>Open Physics</title><description>Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.</description><subject>acoustic Reynolds number</subject><subject>acoustic streaming</subject><subject>tube arrays</subject><subject>vortex</subject><issn>2391-5471</issn><issn>2391-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtLw0AUhYMoWGq3rvMHUueZTJdSfBREEXQ9zONOTEkzZSap5N87MSJuXN3D4Z7DvV-WXWO0xhzzm-PHGAuCCCsQIuQsWxC6wQVnFT7_oy-zVYx7hBDmtGKELbLX5-EAoTGqzZvuBLFvatU3vsu9y5XxQzJMHvsA6tB0dX7yIRkQ03Juxrbp7JztBw25CkGN8Sq7cKqNsPqZy-z9_u5t-1g8vTzstrdPhaEc9YUAA4xyJ0puiDXCcWctxqIEZAi4ChhQBwRjw5jWwpZWc2pLbSqGFBKCLrPd3Gu92stjaA4qjNKrRn4bPtRSTce2IOmGa6iIJsQmCowLbSvjqBCWaecMTV3rucsEH2MA99uHkZz4yomvnPjKiW8KbObAp2p7CBbqMIxJyL0fQpfe_idICKZf5aaEAw</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Yang, Yanfeng</creator><creator>Liu, Chaolin</creator><creator>Xin, Feng</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240520</creationdate><title>Numerical investigation of acoustic streaming vortices in cylindrical tube arrays</title><author>Yang, Yanfeng ; Liu, Chaolin ; Xin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8ece435f865c2dc8f5fdd1186e0c2ef7e4e3fe211c44bb8d6db53d6bc740a0883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acoustic Reynolds number</topic><topic>acoustic streaming</topic><topic>tube arrays</topic><topic>vortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Chaolin</creatorcontrib><creatorcontrib>Xin, Feng</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Open Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yanfeng</au><au>Liu, Chaolin</au><au>Xin, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of acoustic streaming vortices in cylindrical tube arrays</atitle><jtitle>Open Physics</jtitle><date>2024-05-20</date><risdate>2024</risdate><volume>22</volume><issue>1</issue><spage>121768</spage><epage>40</epage><pages>121768-40</pages><issn>2391-5471</issn><eissn>2391-5471</eissn><abstract>Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.</abstract><pub>De Gruyter</pub><doi>10.1515/phys-2024-0022</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2391-5471
ispartof Open Physics, 2024-05, Vol.22 (1), p.121768-40
issn 2391-5471
2391-5471
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_395be72b22d547458bd7cf388d4bffc3
source De Gruyter Open Access Journals
subjects acoustic Reynolds number
acoustic streaming
tube arrays
vortex
title Numerical investigation of acoustic streaming vortices in cylindrical tube arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20acoustic%20streaming%20vortices%20in%20cylindrical%20tube%20arrays&rft.jtitle=Open%20Physics&rft.au=Yang,%20Yanfeng&rft.date=2024-05-20&rft.volume=22&rft.issue=1&rft.spage=121768&rft.epage=40&rft.pages=121768-40&rft.issn=2391-5471&rft.eissn=2391-5471&rft_id=info:doi/10.1515/phys-2024-0022&rft_dat=%3Cwalterdegruyter_doaj_%3E10_1515_phys_2024_0022221%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-8ece435f865c2dc8f5fdd1186e0c2ef7e4e3fe211c44bb8d6db53d6bc740a0883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true