Loading…

Autonomous Soil Water Content Sensors Based on Bipolar Transistors Encapsulated in Porous Ceramic Blocks

We present an autonomous sensor to measure soil water content that uses a single heat pulse probe based on a transistor encapsulated in a porous block. The sensor uses a bipolar junction transistor, which performs as both a heating and temperature-sensing element. Since the sensor depends on a porou...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-03, Vol.9 (6), p.1211
Main Authors: Carvalhaes-Dias, Pedro, Morais, Flávio, Duarte, Luís, Cabot, Andreu, Siqueira Dias, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an autonomous sensor to measure soil water content that uses a single heat pulse probe based on a transistor encapsulated in a porous block. The sensor uses a bipolar junction transistor, which performs as both a heating and temperature-sensing element. Since the sensor depends on a porous block to measure the matric potential of the soil, it does not suffer from accuracy problems if the contact between the probe and the soil is not perfect. A prototype of the sensor showed a temperature variation of Δ T = 2.9   ∘ C when the porous ceramic was saturated with water. The sensor presented an almost linear behavior for small changes in the matric potential of a red latosol when tested in the 1-kPa and 35-kPa pressure range, showing a sensitivity of S = 0.015   ∘ C/kPa. The ultra-low power signal conditioning circuit can read the sensor’s temperature with a resolution of approximately 0.02   ∘ C, so the matric potential can be read in increments of at least 1.33 kPa. When powered only by a 2-F supercapacitor from the energy-harvesting system, the interrogation circuit is able to take one soil water content measurement per day, for eleven days.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9061211