Loading…
The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption
In this study, we explore the mechanical treatment of two metal–organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO 2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ba...
Saved in:
Published in: | Scientific reports 2024-07, Vol.14 (1), p.15386-20, Article 15386 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-e67a1365a21f5234ad78801dcb966757835691e22ba445733329603affcfca733 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 15386 |
container_title | Scientific reports |
container_volume | 14 |
creator | Zelenka, Tomáš Baláž, Matej Férová, Marta Diko, Pavel Bednarčík, Jozef Királyová, Alexandra Zauška, Ľuboš Bureš, Radovan Sharda, Pooja Király, Nikolas Badač, Aleš Vyhlídalová, Jana Želinská, Milica Almáši, Miroslav |
description | In this study, we explore the mechanical treatment of two metal–organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO
2
adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 3
3
Taguchi orthogonal array. The results highlight a marked improvement in CO
2
adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g
-1
) to 41.37 wt.% (9.40 mmol g
-1
), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO
2
adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample’s performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO
2
capture and storage applications. |
doi_str_mv | 10.1038/s41598-024-66432-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3977e86f5f7a4f31a21769a2e5ec49d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3977e86f5f7a4f31a21769a2e5ec49d5</doaj_id><sourcerecordid>3075790047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e67a1365a21f5234ad78801dcb966757835691e22ba445733329603affcfca733</originalsourceid><addsrcrecordid>eNp9ks9uEzEQxlcIRKvSF-CALHHh0KX-7_UJoYrSiqIeSM-W4x0njjbrxd6t2jwHD4zThNJywLLkseebnz3WV1VvCf5IMGtOMydCNzWmvJaSM1pvXlSHFHNRU0bpyyfxQXWc8wqXIajmRL-uDlijZdk0h9Wv2RJQ6H03Qe8ARY8uvt38mNUE2b5F36_PayXRchsvUujb0C9O1-DKQXC2Q9aN4daOIfaozDzaeejCeH-CBpvG4DpAOWzgBI1wN06pFAwpDlBSkB_4zqZ5KWxDvAttEcc0bGFvqlfedhmO9-tRdXP-ZXZ2UV9df708-3xVO6aasQapLGFSWEq8oIzbVjUNJq2baymVUA0TUhOgdG45F4oxRrXEzHrvvLNlf1Rd7rhttCszpLC26d5EG8zDQUwLs-_DMK0UNNILryz3jJQ7ldSWggDHdSsK69OONUzzNbQO-rE0_Az6PNOHpVnEW0MIpZxxUggf9oQUf06QR7MO2UHX2R7ilA3DSmKiRaOK9P0_0lWcUl_-aqsSSmPMtyq6U7kUc07gH19DsNmayOxMZIqJzIOJzKYUvXvax2PJH8sUAdsJckn1C0h_7_4P9jffHdMg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075790047</pqid></control><display><type>article</type><title>The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zelenka, Tomáš ; Baláž, Matej ; Férová, Marta ; Diko, Pavel ; Bednarčík, Jozef ; Királyová, Alexandra ; Zauška, Ľuboš ; Bureš, Radovan ; Sharda, Pooja ; Király, Nikolas ; Badač, Aleš ; Vyhlídalová, Jana ; Želinská, Milica ; Almáši, Miroslav</creator><creatorcontrib>Zelenka, Tomáš ; Baláž, Matej ; Férová, Marta ; Diko, Pavel ; Bednarčík, Jozef ; Királyová, Alexandra ; Zauška, Ľuboš ; Bureš, Radovan ; Sharda, Pooja ; Király, Nikolas ; Badač, Aleš ; Vyhlídalová, Jana ; Želinská, Milica ; Almáši, Miroslav</creatorcontrib><description>In this study, we explore the mechanical treatment of two metal–organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO
2
adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 3
3
Taguchi orthogonal array. The results highlight a marked improvement in CO
2
adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g
-1
) to 41.37 wt.% (9.40 mmol g
-1
), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO
2
adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample’s performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO
2
capture and storage applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-66432-z</identifier><identifier>PMID: 38965298</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/638 ; Adsorption ; Carbon dioxide ; Carbon dioxide storage ; Carbon sequestration ; Design of experiments ; HKUST-1/MOF-76 ; Humanities and Social Sciences ; Mechanical activation ; Metal–organic frameworks ; multidisciplinary ; Nitrogen adsorption ; Particle size ; Porosity ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-07, Vol.14 (1), p.15386-20, Article 15386</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-e67a1365a21f5234ad78801dcb966757835691e22ba445733329603affcfca733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3075790047/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3075790047?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38965298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zelenka, Tomáš</creatorcontrib><creatorcontrib>Baláž, Matej</creatorcontrib><creatorcontrib>Férová, Marta</creatorcontrib><creatorcontrib>Diko, Pavel</creatorcontrib><creatorcontrib>Bednarčík, Jozef</creatorcontrib><creatorcontrib>Királyová, Alexandra</creatorcontrib><creatorcontrib>Zauška, Ľuboš</creatorcontrib><creatorcontrib>Bureš, Radovan</creatorcontrib><creatorcontrib>Sharda, Pooja</creatorcontrib><creatorcontrib>Király, Nikolas</creatorcontrib><creatorcontrib>Badač, Aleš</creatorcontrib><creatorcontrib>Vyhlídalová, Jana</creatorcontrib><creatorcontrib>Želinská, Milica</creatorcontrib><creatorcontrib>Almáši, Miroslav</creatorcontrib><title>The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we explore the mechanical treatment of two metal–organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO
2
adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 3
3
Taguchi orthogonal array. The results highlight a marked improvement in CO
2
adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g
-1
) to 41.37 wt.% (9.40 mmol g
-1
), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO
2
adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample’s performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO
2
capture and storage applications.</description><subject>639/301</subject><subject>639/638</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide storage</subject><subject>Carbon sequestration</subject><subject>Design of experiments</subject><subject>HKUST-1/MOF-76</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical activation</subject><subject>Metal–organic frameworks</subject><subject>multidisciplinary</subject><subject>Nitrogen adsorption</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9uEzEQxlcIRKvSF-CALHHh0KX-7_UJoYrSiqIeSM-W4x0njjbrxd6t2jwHD4zThNJywLLkseebnz3WV1VvCf5IMGtOMydCNzWmvJaSM1pvXlSHFHNRU0bpyyfxQXWc8wqXIajmRL-uDlijZdk0h9Wv2RJQ6H03Qe8ARY8uvt38mNUE2b5F36_PayXRchsvUujb0C9O1-DKQXC2Q9aN4daOIfaozDzaeejCeH-CBpvG4DpAOWzgBI1wN06pFAwpDlBSkB_4zqZ5KWxDvAttEcc0bGFvqlfedhmO9-tRdXP-ZXZ2UV9df708-3xVO6aasQapLGFSWEq8oIzbVjUNJq2baymVUA0TUhOgdG45F4oxRrXEzHrvvLNlf1Rd7rhttCszpLC26d5EG8zDQUwLs-_DMK0UNNILryz3jJQ7ldSWggDHdSsK69OONUzzNbQO-rE0_Az6PNOHpVnEW0MIpZxxUggf9oQUf06QR7MO2UHX2R7ilA3DSmKiRaOK9P0_0lWcUl_-aqsSSmPMtyq6U7kUc07gH19DsNmayOxMZIqJzIOJzKYUvXvax2PJH8sUAdsJckn1C0h_7_4P9jffHdMg</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Zelenka, Tomáš</creator><creator>Baláž, Matej</creator><creator>Férová, Marta</creator><creator>Diko, Pavel</creator><creator>Bednarčík, Jozef</creator><creator>Királyová, Alexandra</creator><creator>Zauška, Ľuboš</creator><creator>Bureš, Radovan</creator><creator>Sharda, Pooja</creator><creator>Király, Nikolas</creator><creator>Badač, Aleš</creator><creator>Vyhlídalová, Jana</creator><creator>Želinská, Milica</creator><creator>Almáši, Miroslav</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240704</creationdate><title>The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption</title><author>Zelenka, Tomáš ; Baláž, Matej ; Férová, Marta ; Diko, Pavel ; Bednarčík, Jozef ; Királyová, Alexandra ; Zauška, Ľuboš ; Bureš, Radovan ; Sharda, Pooja ; Király, Nikolas ; Badač, Aleš ; Vyhlídalová, Jana ; Želinská, Milica ; Almáši, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e67a1365a21f5234ad78801dcb966757835691e22ba445733329603affcfca733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301</topic><topic>639/638</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide storage</topic><topic>Carbon sequestration</topic><topic>Design of experiments</topic><topic>HKUST-1/MOF-76</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical activation</topic><topic>Metal–organic frameworks</topic><topic>multidisciplinary</topic><topic>Nitrogen adsorption</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelenka, Tomáš</creatorcontrib><creatorcontrib>Baláž, Matej</creatorcontrib><creatorcontrib>Férová, Marta</creatorcontrib><creatorcontrib>Diko, Pavel</creatorcontrib><creatorcontrib>Bednarčík, Jozef</creatorcontrib><creatorcontrib>Királyová, Alexandra</creatorcontrib><creatorcontrib>Zauška, Ľuboš</creatorcontrib><creatorcontrib>Bureš, Radovan</creatorcontrib><creatorcontrib>Sharda, Pooja</creatorcontrib><creatorcontrib>Király, Nikolas</creatorcontrib><creatorcontrib>Badač, Aleš</creatorcontrib><creatorcontrib>Vyhlídalová, Jana</creatorcontrib><creatorcontrib>Želinská, Milica</creatorcontrib><creatorcontrib>Almáši, Miroslav</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zelenka, Tomáš</au><au>Baláž, Matej</au><au>Férová, Marta</au><au>Diko, Pavel</au><au>Bednarčík, Jozef</au><au>Királyová, Alexandra</au><au>Zauška, Ľuboš</au><au>Bureš, Radovan</au><au>Sharda, Pooja</au><au>Király, Nikolas</au><au>Badač, Aleš</au><au>Vyhlídalová, Jana</au><au>Želinská, Milica</au><au>Almáši, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-07-04</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>15386</spage><epage>20</epage><pages>15386-20</pages><artnum>15386</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we explore the mechanical treatment of two metal–organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO
2
adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 3
3
Taguchi orthogonal array. The results highlight a marked improvement in CO
2
adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g
-1
) to 41.37 wt.% (9.40 mmol g
-1
), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO
2
adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample’s performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO
2
capture and storage applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38965298</pmid><doi>10.1038/s41598-024-66432-z</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-07, Vol.14 (1), p.15386-20, Article 15386 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3977e86f5f7a4f31a21769a2e5ec49d5 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301 639/638 Adsorption Carbon dioxide Carbon dioxide storage Carbon sequestration Design of experiments HKUST-1/MOF-76 Humanities and Social Sciences Mechanical activation Metal–organic frameworks multidisciplinary Nitrogen adsorption Particle size Porosity Science Science (multidisciplinary) |
title | The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20HKUST-1%20and%20MOF-76%20hand%20grinding/mechanical%20activation%20on%20stability,%20particle%20size,%20textural%20properties%20and%20carbon%20dioxide%20sorption&rft.jtitle=Scientific%20reports&rft.au=Zelenka,%20Tom%C3%A1%C5%A1&rft.date=2024-07-04&rft.volume=14&rft.issue=1&rft.spage=15386&rft.epage=20&rft.pages=15386-20&rft.artnum=15386&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-66432-z&rft_dat=%3Cproquest_doaj_%3E3075790047%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-e67a1365a21f5234ad78801dcb966757835691e22ba445733329603affcfca733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075790047&rft_id=info:pmid/38965298&rfr_iscdi=true |