Loading…
Machine learning of pair-contact process with diffusion
The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality c...
Saved in:
Published in: | Scientific reports 2022-11, Vol.12 (1), p.19728-19728, Article 19728 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-ff8541aefc7ca27d0a1165a2f3e505e049bf3d49feeadbe292d12672f351e96c3 |
container_end_page | 19728 |
container_issue | 1 |
container_start_page | 19728 |
container_title | Scientific reports |
container_volume | 12 |
creator | Shen, Jianmin Li, Wei Deng, Shengfeng Xu, Dian Chen, Shiyang Liu, Feiyi |
description | The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent
ν
⊥
, which, to a large degree, avoids the uncertainty of data collapses through naked eyes. |
doi_str_mv | 10.1038/s41598-022-23350-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_399b9a911c4b4e2780f5b8ec2b53c177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_399b9a911c4b4e2780f5b8ec2b53c177</doaj_id><sourcerecordid>2737301941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ff8541aefc7ca27d0a1165a2f3e505e049bf3d49feeadbe292d12672f351e96c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ABReLCJcUe23F8QUIV0EpFXOBsOc5416usvdgJiH-P25TScsAHf80zr8fzEvKS0XNGef-2CCZ131KAFjiXtIUn5BSokPUI8PTB_oSclbKndUjQgunn5IR3XHedhlOiPlu3CxGbCW2OIW6b5JujDbl1Kc7Wzc0xJ4elND_DvGvG4P1SQoovyDNvp4Jnd-uGfPv44evFZXv95dPVxfvr1gnN5tb7Xgpm0TvlLKiRWsY6acFzlFQiFXrwfBTaI9pxQNAwMuhUjUuGunN8Q65W3THZvTnmcLD5l0k2mNuLlLfG5jm4CQ3XetBWM-bEIBBUT70cenQwSO6YUlXr3ap1XIYDjg7jnO30SPRxJIad2aYfRteKWO36hry5E8jp-4JlNodQHE6TjZiWYkDxnvVKCVHR1_-g-7TkWFt1QylOWbWiUrBSLqdSMvr7Yhg1Nzab1WZTbTa3Ntd5Q149_MZ9yh9TK8BXoNRQ3GL--_Z_ZH8D17KyRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737301941</pqid></control><display><type>article</type><title>Machine learning of pair-contact process with diffusion</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shen, Jianmin ; Li, Wei ; Deng, Shengfeng ; Xu, Dian ; Chen, Shiyang ; Liu, Feiyi</creator><creatorcontrib>Shen, Jianmin ; Li, Wei ; Deng, Shengfeng ; Xu, Dian ; Chen, Shiyang ; Liu, Feiyi</creatorcontrib><description>The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent
ν
⊥
, which, to a large degree, avoids the uncertainty of data collapses through naked eyes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-23350-2</identifier><identifier>PMID: 36396692</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 639/766 ; Diffusion ; Humanities and Social Sciences ; Humans ; Machine Learning ; Mathematical models ; multidisciplinary ; Phase Transition ; Phase transitions ; Principal Component Analysis ; Principal components analysis ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-11, Vol.12 (1), p.19728-19728, Article 19728</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-ff8541aefc7ca27d0a1165a2f3e505e049bf3d49feeadbe292d12672f351e96c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2737301941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737301941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36396692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jianmin</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Deng, Shengfeng</creatorcontrib><creatorcontrib>Xu, Dian</creatorcontrib><creatorcontrib>Chen, Shiyang</creatorcontrib><creatorcontrib>Liu, Feiyi</creatorcontrib><title>Machine learning of pair-contact process with diffusion</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent
ν
⊥
, which, to a large degree, avoids the uncertainty of data collapses through naked eyes.</description><subject>639/705</subject><subject>639/766</subject><subject>Diffusion</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ABReLCJcUe23F8QUIV0EpFXOBsOc5416usvdgJiH-P25TScsAHf80zr8fzEvKS0XNGef-2CCZ131KAFjiXtIUn5BSokPUI8PTB_oSclbKndUjQgunn5IR3XHedhlOiPlu3CxGbCW2OIW6b5JujDbl1Kc7Wzc0xJ4elND_DvGvG4P1SQoovyDNvp4Jnd-uGfPv44evFZXv95dPVxfvr1gnN5tb7Xgpm0TvlLKiRWsY6acFzlFQiFXrwfBTaI9pxQNAwMuhUjUuGunN8Q65W3THZvTnmcLD5l0k2mNuLlLfG5jm4CQ3XetBWM-bEIBBUT70cenQwSO6YUlXr3ap1XIYDjg7jnO30SPRxJIad2aYfRteKWO36hry5E8jp-4JlNodQHE6TjZiWYkDxnvVKCVHR1_-g-7TkWFt1QylOWbWiUrBSLqdSMvr7Yhg1Nzab1WZTbTa3Ntd5Q149_MZ9yh9TK8BXoNRQ3GL--_Z_ZH8D17KyRQ</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Shen, Jianmin</creator><creator>Li, Wei</creator><creator>Deng, Shengfeng</creator><creator>Xu, Dian</creator><creator>Chen, Shiyang</creator><creator>Liu, Feiyi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221117</creationdate><title>Machine learning of pair-contact process with diffusion</title><author>Shen, Jianmin ; Li, Wei ; Deng, Shengfeng ; Xu, Dian ; Chen, Shiyang ; Liu, Feiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ff8541aefc7ca27d0a1165a2f3e505e049bf3d49feeadbe292d12672f351e96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/705</topic><topic>639/766</topic><topic>Diffusion</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jianmin</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Deng, Shengfeng</creatorcontrib><creatorcontrib>Xu, Dian</creatorcontrib><creatorcontrib>Chen, Shiyang</creatorcontrib><creatorcontrib>Liu, Feiyi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jianmin</au><au>Li, Wei</au><au>Deng, Shengfeng</au><au>Xu, Dian</au><au>Chen, Shiyang</au><au>Liu, Feiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning of pair-contact process with diffusion</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-11-17</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>19728</spage><epage>19728</epage><pages>19728-19728</pages><artnum>19728</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent
ν
⊥
, which, to a large degree, avoids the uncertainty of data collapses through naked eyes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36396692</pmid><doi>10.1038/s41598-022-23350-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-11, Vol.12 (1), p.19728-19728, Article 19728 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_399b9a911c4b4e2780f5b8ec2b53c177 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705 639/766 Diffusion Humanities and Social Sciences Humans Machine Learning Mathematical models multidisciplinary Phase Transition Phase transitions Principal Component Analysis Principal components analysis Science Science (multidisciplinary) |
title | Machine learning of pair-contact process with diffusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20of%20pair-contact%20process%20with%20diffusion&rft.jtitle=Scientific%20reports&rft.au=Shen,%20Jianmin&rft.date=2022-11-17&rft.volume=12&rft.issue=1&rft.spage=19728&rft.epage=19728&rft.pages=19728-19728&rft.artnum=19728&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-23350-2&rft_dat=%3Cproquest_doaj_%3E2737301941%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-ff8541aefc7ca27d0a1165a2f3e505e049bf3d49feeadbe292d12672f351e96c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737301941&rft_id=info:pmid/36396692&rfr_iscdi=true |