Loading…

Holey Graphene: Topological Control of Electronic Properties and Electric Conductivity

This paper studies holey graphene with various neck widths (the smallest distance between two neighbor holes). For the considered structures, the energy gap, the Fermi level, the density of electronic states, and the distribution of the local density of electronic states (LDOS) were found. The elect...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-04, Vol.11 (5), p.1074
Main Authors: Barkov, Pavel V, Glukhova, Olga E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies holey graphene with various neck widths (the smallest distance between two neighbor holes). For the considered structures, the energy gap, the Fermi level, the density of electronic states, and the distribution of the local density of electronic states (LDOS) were found. The electroconductive properties of holey graphene with round holes were calculated depending on the neck width. It was found that, depending on the neck width, holey graphene demonstrated a semiconductor type of conductivity with an energy gap varying in the range of 0.01-0.37 eV. It was also shown that by changing the neck width, it is possible to control the electrical conductivity of holey graphene. The anisotropy of holey graphene electrical conductivity was observed depending on the direction of the current transfer.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11051074