Loading…
The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer
Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the l...
Saved in:
Published in: | Biosensors (Basel) 2022-04, Vol.12 (5), p.258 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873 |
container_end_page | |
container_issue | 5 |
container_start_page | 258 |
container_title | Biosensors (Basel) |
container_volume | 12 |
creator | Gihaz, Shalev Herzallh, Nidaa Shrara Cohen, Yifat Bachar, Oren Fishman, Ayelet Yehezkeli, Omer |
description | Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from
(
BOD) at 3.5 Å resolution. Overall,
BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes. |
doi_str_mv | 10.3390/bios12050258 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9</doaj_id><sourcerecordid>2671269901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</originalsourceid><addsrcrecordid>eNpdks9rFDEUxwdRbKm9eZaAFw8dze9MLoJbqxYKBXd7Dpnkpc0yO1mTmaJn_3Gzbi1bc8g3JB8-5D1e07wm-D1jGn_oYyqEYoGp6J41xxQr3Uqm-POD81FzWsoa16W40ky9bI6YkJQLiY-b36s7QMspz26aM6AU0CIOMc99HNH1z-htARRy2qCFdXEY5oK28ybu8jvcgx0KsuhmjD9mQJ9jmYcQPaBFGj0KKaNlnKBdbsHFEF0FMrgJXQx1z2lEq2zHEiC_al6EaoLThzxpbr5crM6_tVfXXy_PP121jjMxtRqHXnVgCScqWCEdl9YK1kvOFdG0k8JRqVWnmfM1KXDAKgRLmPdcdoqdNJd7r092bbY5bmz-ZZKN5u9FyrfG5im6AQzTTsjAlVCOcB5EJ7DvQCnvGbXW6ur6uHdt534D3sE4ZTs8kT59GeOduU33RhPWUSKr4N2DIKfavTKZTSwOhsGOkOZiqFSklqMxqejb_9B1mvNYW7WjMO4EZbRSZ3vK5VRKhvD4GYLNbljM4bBU_M1hAY_wv9FgfwB1pLr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670085232</pqid></control><display><type>article</type><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</creator><creatorcontrib>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</creatorcontrib><description>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from
(
BOD) at 3.5 Å resolution. Overall,
BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios12050258</identifier><identifier>PMID: 35624560</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bacillus pumilus ; Bilirubin ; Bilirubin oxidase ; Binding sites ; Biocatalysts ; Biochemical fuel cells ; Biochemical oxygen demand ; Biodiesel fuels ; bioelectrocatalysis ; Biofuels ; Carbon ; Cloning ; Configurations ; Copper ; Crystal structure ; Crystallization ; E coli ; Electrodes ; Electron transfer ; Electrons ; Enzymes ; Homology ; Oxidase ; Oxygen ; site-specific immobilization ; X-ray crystallography</subject><ispartof>Biosensors (Basel), 2022-04, Vol.12 (5), p.258</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</cites><orcidid>0000-0001-7292-0808 ; 0000-0001-7588-6705 ; 0000-0002-6381-2319 ; 0000-0002-2653-361X ; 0000-0002-1644-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670085232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670085232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35624560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gihaz, Shalev</creatorcontrib><creatorcontrib>Herzallh, Nidaa Shrara</creatorcontrib><creatorcontrib>Cohen, Yifat</creatorcontrib><creatorcontrib>Bachar, Oren</creatorcontrib><creatorcontrib>Fishman, Ayelet</creatorcontrib><creatorcontrib>Yehezkeli, Omer</creatorcontrib><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from
(
BOD) at 3.5 Å resolution. Overall,
BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</description><subject>Bacillus pumilus</subject><subject>Bilirubin</subject><subject>Bilirubin oxidase</subject><subject>Binding sites</subject><subject>Biocatalysts</subject><subject>Biochemical fuel cells</subject><subject>Biochemical oxygen demand</subject><subject>Biodiesel fuels</subject><subject>bioelectrocatalysis</subject><subject>Biofuels</subject><subject>Carbon</subject><subject>Cloning</subject><subject>Configurations</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>E coli</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Homology</subject><subject>Oxidase</subject><subject>Oxygen</subject><subject>site-specific immobilization</subject><subject>X-ray crystallography</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUxwdRbKm9eZaAFw8dze9MLoJbqxYKBXd7Dpnkpc0yO1mTmaJn_3Gzbi1bc8g3JB8-5D1e07wm-D1jGn_oYyqEYoGp6J41xxQr3Uqm-POD81FzWsoa16W40ky9bI6YkJQLiY-b36s7QMspz26aM6AU0CIOMc99HNH1z-htARRy2qCFdXEY5oK28ybu8jvcgx0KsuhmjD9mQJ9jmYcQPaBFGj0KKaNlnKBdbsHFEF0FMrgJXQx1z2lEq2zHEiC_al6EaoLThzxpbr5crM6_tVfXXy_PP121jjMxtRqHXnVgCScqWCEdl9YK1kvOFdG0k8JRqVWnmfM1KXDAKgRLmPdcdoqdNJd7r092bbY5bmz-ZZKN5u9FyrfG5im6AQzTTsjAlVCOcB5EJ7DvQCnvGbXW6ur6uHdt534D3sE4ZTs8kT59GeOduU33RhPWUSKr4N2DIKfavTKZTSwOhsGOkOZiqFSklqMxqejb_9B1mvNYW7WjMO4EZbRSZ3vK5VRKhvD4GYLNbljM4bBU_M1hAY_wv9FgfwB1pLr0</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Gihaz, Shalev</creator><creator>Herzallh, Nidaa Shrara</creator><creator>Cohen, Yifat</creator><creator>Bachar, Oren</creator><creator>Fishman, Ayelet</creator><creator>Yehezkeli, Omer</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7292-0808</orcidid><orcidid>https://orcid.org/0000-0001-7588-6705</orcidid><orcidid>https://orcid.org/0000-0002-6381-2319</orcidid><orcidid>https://orcid.org/0000-0002-2653-361X</orcidid><orcidid>https://orcid.org/0000-0002-1644-9377</orcidid></search><sort><creationdate>20220419</creationdate><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><author>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacillus pumilus</topic><topic>Bilirubin</topic><topic>Bilirubin oxidase</topic><topic>Binding sites</topic><topic>Biocatalysts</topic><topic>Biochemical fuel cells</topic><topic>Biochemical oxygen demand</topic><topic>Biodiesel fuels</topic><topic>bioelectrocatalysis</topic><topic>Biofuels</topic><topic>Carbon</topic><topic>Cloning</topic><topic>Configurations</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>E coli</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Homology</topic><topic>Oxidase</topic><topic>Oxygen</topic><topic>site-specific immobilization</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gihaz, Shalev</creatorcontrib><creatorcontrib>Herzallh, Nidaa Shrara</creatorcontrib><creatorcontrib>Cohen, Yifat</creatorcontrib><creatorcontrib>Bachar, Oren</creatorcontrib><creatorcontrib>Fishman, Ayelet</creatorcontrib><creatorcontrib>Yehezkeli, Omer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gihaz, Shalev</au><au>Herzallh, Nidaa Shrara</au><au>Cohen, Yifat</au><au>Bachar, Oren</au><au>Fishman, Ayelet</au><au>Yehezkeli, Omer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>258</spage><pages>258-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from
(
BOD) at 3.5 Å resolution. Overall,
BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35624560</pmid><doi>10.3390/bios12050258</doi><orcidid>https://orcid.org/0000-0001-7292-0808</orcidid><orcidid>https://orcid.org/0000-0001-7588-6705</orcidid><orcidid>https://orcid.org/0000-0002-6381-2319</orcidid><orcidid>https://orcid.org/0000-0002-2653-361X</orcidid><orcidid>https://orcid.org/0000-0002-1644-9377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6374 |
ispartof | Biosensors (Basel), 2022-04, Vol.12 (5), p.258 |
issn | 2079-6374 2079-6374 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9 |
source | Publicly Available Content Database; PubMed Central |
subjects | Bacillus pumilus Bilirubin Bilirubin oxidase Binding sites Biocatalysts Biochemical fuel cells Biochemical oxygen demand Biodiesel fuels bioelectrocatalysis Biofuels Carbon Cloning Configurations Copper Crystal structure Crystallization E coli Electrodes Electron transfer Electrons Enzymes Homology Oxidase Oxygen site-specific immobilization X-ray crystallography |
title | The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20Bilirubin%20Oxidase%20from%20Bacillus%20pumilus%20Reveals%20a%20Unique%20Disulfide%20Bond%20for%20Site-Specific%20Direct%20Electron%20Transfer&rft.jtitle=Biosensors%20(Basel)&rft.au=Gihaz,%20Shalev&rft.date=2022-04-19&rft.volume=12&rft.issue=5&rft.spage=258&rft.pages=258-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios12050258&rft_dat=%3Cproquest_doaj_%3E2671269901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670085232&rft_id=info:pmid/35624560&rfr_iscdi=true |