Loading…

The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer

Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the l...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2022-04, Vol.12 (5), p.258
Main Authors: Gihaz, Shalev, Herzallh, Nidaa Shrara, Cohen, Yifat, Bachar, Oren, Fishman, Ayelet, Yehezkeli, Omer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873
container_end_page
container_issue 5
container_start_page 258
container_title Biosensors (Basel)
container_volume 12
creator Gihaz, Shalev
Herzallh, Nidaa Shrara
Cohen, Yifat
Bachar, Oren
Fishman, Ayelet
Yehezkeli, Omer
description Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from ( BOD) at 3.5 Å resolution. Overall, BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.
doi_str_mv 10.3390/bios12050258
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9</doaj_id><sourcerecordid>2671269901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</originalsourceid><addsrcrecordid>eNpdks9rFDEUxwdRbKm9eZaAFw8dze9MLoJbqxYKBXd7Dpnkpc0yO1mTmaJn_3Gzbi1bc8g3JB8-5D1e07wm-D1jGn_oYyqEYoGp6J41xxQr3Uqm-POD81FzWsoa16W40ky9bI6YkJQLiY-b36s7QMspz26aM6AU0CIOMc99HNH1z-htARRy2qCFdXEY5oK28ybu8jvcgx0KsuhmjD9mQJ9jmYcQPaBFGj0KKaNlnKBdbsHFEF0FMrgJXQx1z2lEq2zHEiC_al6EaoLThzxpbr5crM6_tVfXXy_PP121jjMxtRqHXnVgCScqWCEdl9YK1kvOFdG0k8JRqVWnmfM1KXDAKgRLmPdcdoqdNJd7r092bbY5bmz-ZZKN5u9FyrfG5im6AQzTTsjAlVCOcB5EJ7DvQCnvGbXW6ur6uHdt534D3sE4ZTs8kT59GeOduU33RhPWUSKr4N2DIKfavTKZTSwOhsGOkOZiqFSklqMxqejb_9B1mvNYW7WjMO4EZbRSZ3vK5VRKhvD4GYLNbljM4bBU_M1hAY_wv9FgfwB1pLr0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670085232</pqid></control><display><type>article</type><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</creator><creatorcontrib>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</creatorcontrib><description>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from ( BOD) at 3.5 Å resolution. Overall, BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios12050258</identifier><identifier>PMID: 35624560</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bacillus pumilus ; Bilirubin ; Bilirubin oxidase ; Binding sites ; Biocatalysts ; Biochemical fuel cells ; Biochemical oxygen demand ; Biodiesel fuels ; bioelectrocatalysis ; Biofuels ; Carbon ; Cloning ; Configurations ; Copper ; Crystal structure ; Crystallization ; E coli ; Electrodes ; Electron transfer ; Electrons ; Enzymes ; Homology ; Oxidase ; Oxygen ; site-specific immobilization ; X-ray crystallography</subject><ispartof>Biosensors (Basel), 2022-04, Vol.12 (5), p.258</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</cites><orcidid>0000-0001-7292-0808 ; 0000-0001-7588-6705 ; 0000-0002-6381-2319 ; 0000-0002-2653-361X ; 0000-0002-1644-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670085232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670085232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35624560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gihaz, Shalev</creatorcontrib><creatorcontrib>Herzallh, Nidaa Shrara</creatorcontrib><creatorcontrib>Cohen, Yifat</creatorcontrib><creatorcontrib>Bachar, Oren</creatorcontrib><creatorcontrib>Fishman, Ayelet</creatorcontrib><creatorcontrib>Yehezkeli, Omer</creatorcontrib><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from ( BOD) at 3.5 Å resolution. Overall, BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</description><subject>Bacillus pumilus</subject><subject>Bilirubin</subject><subject>Bilirubin oxidase</subject><subject>Binding sites</subject><subject>Biocatalysts</subject><subject>Biochemical fuel cells</subject><subject>Biochemical oxygen demand</subject><subject>Biodiesel fuels</subject><subject>bioelectrocatalysis</subject><subject>Biofuels</subject><subject>Carbon</subject><subject>Cloning</subject><subject>Configurations</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>E coli</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Homology</subject><subject>Oxidase</subject><subject>Oxygen</subject><subject>site-specific immobilization</subject><subject>X-ray crystallography</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUxwdRbKm9eZaAFw8dze9MLoJbqxYKBXd7Dpnkpc0yO1mTmaJn_3Gzbi1bc8g3JB8-5D1e07wm-D1jGn_oYyqEYoGp6J41xxQr3Uqm-POD81FzWsoa16W40ky9bI6YkJQLiY-b36s7QMspz26aM6AU0CIOMc99HNH1z-htARRy2qCFdXEY5oK28ybu8jvcgx0KsuhmjD9mQJ9jmYcQPaBFGj0KKaNlnKBdbsHFEF0FMrgJXQx1z2lEq2zHEiC_al6EaoLThzxpbr5crM6_tVfXXy_PP121jjMxtRqHXnVgCScqWCEdl9YK1kvOFdG0k8JRqVWnmfM1KXDAKgRLmPdcdoqdNJd7r092bbY5bmz-ZZKN5u9FyrfG5im6AQzTTsjAlVCOcB5EJ7DvQCnvGbXW6ur6uHdt534D3sE4ZTs8kT59GeOduU33RhPWUSKr4N2DIKfavTKZTSwOhsGOkOZiqFSklqMxqejb_9B1mvNYW7WjMO4EZbRSZ3vK5VRKhvD4GYLNbljM4bBU_M1hAY_wv9FgfwB1pLr0</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Gihaz, Shalev</creator><creator>Herzallh, Nidaa Shrara</creator><creator>Cohen, Yifat</creator><creator>Bachar, Oren</creator><creator>Fishman, Ayelet</creator><creator>Yehezkeli, Omer</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7292-0808</orcidid><orcidid>https://orcid.org/0000-0001-7588-6705</orcidid><orcidid>https://orcid.org/0000-0002-6381-2319</orcidid><orcidid>https://orcid.org/0000-0002-2653-361X</orcidid><orcidid>https://orcid.org/0000-0002-1644-9377</orcidid></search><sort><creationdate>20220419</creationdate><title>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</title><author>Gihaz, Shalev ; Herzallh, Nidaa Shrara ; Cohen, Yifat ; Bachar, Oren ; Fishman, Ayelet ; Yehezkeli, Omer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacillus pumilus</topic><topic>Bilirubin</topic><topic>Bilirubin oxidase</topic><topic>Binding sites</topic><topic>Biocatalysts</topic><topic>Biochemical fuel cells</topic><topic>Biochemical oxygen demand</topic><topic>Biodiesel fuels</topic><topic>bioelectrocatalysis</topic><topic>Biofuels</topic><topic>Carbon</topic><topic>Cloning</topic><topic>Configurations</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>E coli</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Homology</topic><topic>Oxidase</topic><topic>Oxygen</topic><topic>site-specific immobilization</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gihaz, Shalev</creatorcontrib><creatorcontrib>Herzallh, Nidaa Shrara</creatorcontrib><creatorcontrib>Cohen, Yifat</creatorcontrib><creatorcontrib>Bachar, Oren</creatorcontrib><creatorcontrib>Fishman, Ayelet</creatorcontrib><creatorcontrib>Yehezkeli, Omer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gihaz, Shalev</au><au>Herzallh, Nidaa Shrara</au><au>Cohen, Yifat</au><au>Bachar, Oren</au><au>Fishman, Ayelet</au><au>Yehezkeli, Omer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>258</spage><pages>258-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme's internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from ( BOD) at 3.5 Å resolution. Overall, BOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35624560</pmid><doi>10.3390/bios12050258</doi><orcidid>https://orcid.org/0000-0001-7292-0808</orcidid><orcidid>https://orcid.org/0000-0001-7588-6705</orcidid><orcidid>https://orcid.org/0000-0002-6381-2319</orcidid><orcidid>https://orcid.org/0000-0002-2653-361X</orcidid><orcidid>https://orcid.org/0000-0002-1644-9377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6374
ispartof Biosensors (Basel), 2022-04, Vol.12 (5), p.258
issn 2079-6374
2079-6374
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_39c56f4757c144f5850d8e77dd32aaa9
source Publicly Available Content Database; PubMed Central
subjects Bacillus pumilus
Bilirubin
Bilirubin oxidase
Binding sites
Biocatalysts
Biochemical fuel cells
Biochemical oxygen demand
Biodiesel fuels
bioelectrocatalysis
Biofuels
Carbon
Cloning
Configurations
Copper
Crystal structure
Crystallization
E coli
Electrodes
Electron transfer
Electrons
Enzymes
Homology
Oxidase
Oxygen
site-specific immobilization
X-ray crystallography
title The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20Bilirubin%20Oxidase%20from%20Bacillus%20pumilus%20Reveals%20a%20Unique%20Disulfide%20Bond%20for%20Site-Specific%20Direct%20Electron%20Transfer&rft.jtitle=Biosensors%20(Basel)&rft.au=Gihaz,%20Shalev&rft.date=2022-04-19&rft.volume=12&rft.issue=5&rft.spage=258&rft.pages=258-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios12050258&rft_dat=%3Cproquest_doaj_%3E2671269901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-90fb78ea1417fa56c46aa53b6447192865c2697893cd6972e4e07ffa13dd46873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670085232&rft_id=info:pmid/35624560&rfr_iscdi=true