Loading…

The Electrical Analogue Computer of Microtubule’s Protofilament

Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and sma...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2020, Vol.2020 (2020), p.1-10
Main Authors: Fotsin, H., Kenfack, S. C., Fotue, A. J., Ekosso, M. C., Fai, L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913
cites cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913
container_end_page 10
container_issue 2020
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2020
creator Fotsin, H.
Kenfack, S. C.
Fotue, A. J.
Ekosso, M. C.
Fai, L. C.
description Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.
doi_str_mv 10.1155/2020/4916202
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697090927</galeid><doaj_id>oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f</doaj_id><sourcerecordid>A697090927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoeN25loJLrSZpm8tyGMYLKLpQcBdyORkzdJoxbRF3voav55OYsaJLySIn4fv_nJw_yw4xOsO4rs8JIui8EpimYiPbwRSxgnP2tJlqRGiBCKHb2W7XLVAiuSA72eThGfJZA6aP3qgmn7SqCfMB8mlYroYeYh5cfutNDP2ghwY-3z-6_D6dgvONWkLb72dbTjUdHPzse9njxexhelXc3F1eTyc3halo3RdOa2swcUaXCgutoOJcO0WBowpAm5IIpxGnyCJtnAaCUM1qQWht1wJc7mXXo68NaiFX0S9VfJNBefl9EeJcqth704AshWVUc1OVGlfWEM44WFYKSjDWjLnkdTx6rWJ4GaDr5SIMMX29k6SqBGc1xusXz0ZqrpKpb13oozJpWVh6E1pIIwA5oYIhgQRhSXA6CtK4ui6C-20TI7lOSK4Tkj8JJfxkxJ99a9Wr_48-GmlIDDj1R-O6TN2WX_whmb0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449875111</pqid></control><display><type>article</type><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C.</creator><contributor>Consolo, Giancarlo ; Giancarlo Consolo</contributor><creatorcontrib>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C. ; Consolo, Giancarlo ; Giancarlo Consolo</creatorcontrib><description>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2020/4916202</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Amplification ; Analog circuits ; Analog computers ; Analysis ; Bioelectricity ; Biological products ; Biomedical materials ; Biopolymers ; Biotechnology ; Cell division ; Circuit design ; Damping ; Design ; Differential equations ; Dynamic stability ; Nanotechnology ; Nanowires ; Operational amplifiers ; Partial differential equations ; Resistors ; Runge-Kutta method ; Software ; Transistors</subject><ispartof>Discrete dynamics in nature and society, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 M. C. Ekosso et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 M. C. Ekosso et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</citedby><cites>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</cites><orcidid>0000-0003-0522-5738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2449875111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2449875111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Consolo, Giancarlo</contributor><contributor>Giancarlo Consolo</contributor><creatorcontrib>Fotsin, H.</creatorcontrib><creatorcontrib>Kenfack, S. C.</creatorcontrib><creatorcontrib>Fotue, A. J.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><title>Discrete dynamics in nature and society</title><description>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</description><subject>Amplification</subject><subject>Analog circuits</subject><subject>Analog computers</subject><subject>Analysis</subject><subject>Bioelectricity</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cell division</subject><subject>Circuit design</subject><subject>Damping</subject><subject>Design</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Operational amplifiers</subject><subject>Partial differential equations</subject><subject>Resistors</subject><subject>Runge-Kutta method</subject><subject>Software</subject><subject>Transistors</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkctKxDAUhosoeN25loJLrSZpm8tyGMYLKLpQcBdyORkzdJoxbRF3voav55OYsaJLySIn4fv_nJw_yw4xOsO4rs8JIui8EpimYiPbwRSxgnP2tJlqRGiBCKHb2W7XLVAiuSA72eThGfJZA6aP3qgmn7SqCfMB8mlYroYeYh5cfutNDP2ghwY-3z-6_D6dgvONWkLb72dbTjUdHPzse9njxexhelXc3F1eTyc3halo3RdOa2swcUaXCgutoOJcO0WBowpAm5IIpxGnyCJtnAaCUM1qQWht1wJc7mXXo68NaiFX0S9VfJNBefl9EeJcqth704AshWVUc1OVGlfWEM44WFYKSjDWjLnkdTx6rWJ4GaDr5SIMMX29k6SqBGc1xusXz0ZqrpKpb13oozJpWVh6E1pIIwA5oYIhgQRhSXA6CtK4ui6C-20TI7lOSK4Tkj8JJfxkxJ99a9Wr_48-GmlIDDj1R-O6TN2WX_whmb0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fotsin, H.</creator><creator>Kenfack, S. C.</creator><creator>Fotue, A. J.</creator><creator>Ekosso, M. C.</creator><creator>Fai, L. C.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0522-5738</orcidid></search><sort><creationdate>2020</creationdate><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><author>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Analog circuits</topic><topic>Analog computers</topic><topic>Analysis</topic><topic>Bioelectricity</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cell division</topic><topic>Circuit design</topic><topic>Damping</topic><topic>Design</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Operational amplifiers</topic><topic>Partial differential equations</topic><topic>Resistors</topic><topic>Runge-Kutta method</topic><topic>Software</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fotsin, H.</creatorcontrib><creatorcontrib>Kenfack, S. C.</creatorcontrib><creatorcontrib>Fotue, A. J.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fotsin, H.</au><au>Kenfack, S. C.</au><au>Fotue, A. J.</au><au>Ekosso, M. C.</au><au>Fai, L. C.</au><au>Consolo, Giancarlo</au><au>Giancarlo Consolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrical Analogue Computer of Microtubule’s Protofilament</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4916202</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0522-5738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2020, Vol.2020 (2020), p.1-10
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Amplification
Analog circuits
Analog computers
Analysis
Bioelectricity
Biological products
Biomedical materials
Biopolymers
Biotechnology
Cell division
Circuit design
Damping
Design
Differential equations
Dynamic stability
Nanotechnology
Nanowires
Operational amplifiers
Partial differential equations
Resistors
Runge-Kutta method
Software
Transistors
title The Electrical Analogue Computer of Microtubule’s Protofilament
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrical%20Analogue%20Computer%20of%20Microtubule%E2%80%99s%20Protofilament&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Fotsin,%20H.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2020/4916202&rft_dat=%3Cgale_doaj_%3EA697090927%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449875111&rft_id=info:pmid/&rft_galeid=A697090927&rfr_iscdi=true