Loading…
The Electrical Analogue Computer of Microtubule’s Protofilament
Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and sma...
Saved in:
Published in: | Discrete dynamics in nature and society 2020, Vol.2020 (2020), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913 |
container_end_page | 10 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2020 |
creator | Fotsin, H. Kenfack, S. C. Fotue, A. J. Ekosso, M. C. Fai, L. C. |
description | Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor. |
doi_str_mv | 10.1155/2020/4916202 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697090927</galeid><doaj_id>oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f</doaj_id><sourcerecordid>A697090927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoeN25loJLrSZpm8tyGMYLKLpQcBdyORkzdJoxbRF3voav55OYsaJLySIn4fv_nJw_yw4xOsO4rs8JIui8EpimYiPbwRSxgnP2tJlqRGiBCKHb2W7XLVAiuSA72eThGfJZA6aP3qgmn7SqCfMB8mlYroYeYh5cfutNDP2ghwY-3z-6_D6dgvONWkLb72dbTjUdHPzse9njxexhelXc3F1eTyc3halo3RdOa2swcUaXCgutoOJcO0WBowpAm5IIpxGnyCJtnAaCUM1qQWht1wJc7mXXo68NaiFX0S9VfJNBefl9EeJcqth704AshWVUc1OVGlfWEM44WFYKSjDWjLnkdTx6rWJ4GaDr5SIMMX29k6SqBGc1xusXz0ZqrpKpb13oozJpWVh6E1pIIwA5oYIhgQRhSXA6CtK4ui6C-20TI7lOSK4Tkj8JJfxkxJ99a9Wr_48-GmlIDDj1R-O6TN2WX_whmb0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449875111</pqid></control><display><type>article</type><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C.</creator><contributor>Consolo, Giancarlo ; Giancarlo Consolo</contributor><creatorcontrib>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C. ; Consolo, Giancarlo ; Giancarlo Consolo</creatorcontrib><description>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2020/4916202</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Amplification ; Analog circuits ; Analog computers ; Analysis ; Bioelectricity ; Biological products ; Biomedical materials ; Biopolymers ; Biotechnology ; Cell division ; Circuit design ; Damping ; Design ; Differential equations ; Dynamic stability ; Nanotechnology ; Nanowires ; Operational amplifiers ; Partial differential equations ; Resistors ; Runge-Kutta method ; Software ; Transistors</subject><ispartof>Discrete dynamics in nature and society, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 M. C. Ekosso et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 M. C. Ekosso et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</citedby><cites>FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</cites><orcidid>0000-0003-0522-5738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2449875111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2449875111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Consolo, Giancarlo</contributor><contributor>Giancarlo Consolo</contributor><creatorcontrib>Fotsin, H.</creatorcontrib><creatorcontrib>Kenfack, S. C.</creatorcontrib><creatorcontrib>Fotue, A. J.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><title>Discrete dynamics in nature and society</title><description>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</description><subject>Amplification</subject><subject>Analog circuits</subject><subject>Analog computers</subject><subject>Analysis</subject><subject>Bioelectricity</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cell division</subject><subject>Circuit design</subject><subject>Damping</subject><subject>Design</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Operational amplifiers</subject><subject>Partial differential equations</subject><subject>Resistors</subject><subject>Runge-Kutta method</subject><subject>Software</subject><subject>Transistors</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkctKxDAUhosoeN25loJLrSZpm8tyGMYLKLpQcBdyORkzdJoxbRF3voav55OYsaJLySIn4fv_nJw_yw4xOsO4rs8JIui8EpimYiPbwRSxgnP2tJlqRGiBCKHb2W7XLVAiuSA72eThGfJZA6aP3qgmn7SqCfMB8mlYroYeYh5cfutNDP2ghwY-3z-6_D6dgvONWkLb72dbTjUdHPzse9njxexhelXc3F1eTyc3halo3RdOa2swcUaXCgutoOJcO0WBowpAm5IIpxGnyCJtnAaCUM1qQWht1wJc7mXXo68NaiFX0S9VfJNBefl9EeJcqth704AshWVUc1OVGlfWEM44WFYKSjDWjLnkdTx6rWJ4GaDr5SIMMX29k6SqBGc1xusXz0ZqrpKpb13oozJpWVh6E1pIIwA5oYIhgQRhSXA6CtK4ui6C-20TI7lOSK4Tkj8JJfxkxJ99a9Wr_48-GmlIDDj1R-O6TN2WX_whmb0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fotsin, H.</creator><creator>Kenfack, S. C.</creator><creator>Fotue, A. J.</creator><creator>Ekosso, M. C.</creator><creator>Fai, L. C.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0522-5738</orcidid></search><sort><creationdate>2020</creationdate><title>The Electrical Analogue Computer of Microtubule’s Protofilament</title><author>Fotsin, H. ; Kenfack, S. C. ; Fotue, A. J. ; Ekosso, M. C. ; Fai, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Analog circuits</topic><topic>Analog computers</topic><topic>Analysis</topic><topic>Bioelectricity</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cell division</topic><topic>Circuit design</topic><topic>Damping</topic><topic>Design</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Operational amplifiers</topic><topic>Partial differential equations</topic><topic>Resistors</topic><topic>Runge-Kutta method</topic><topic>Software</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fotsin, H.</creatorcontrib><creatorcontrib>Kenfack, S. C.</creatorcontrib><creatorcontrib>Fotue, A. J.</creatorcontrib><creatorcontrib>Ekosso, M. C.</creatorcontrib><creatorcontrib>Fai, L. C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fotsin, H.</au><au>Kenfack, S. C.</au><au>Fotue, A. J.</au><au>Ekosso, M. C.</au><au>Fai, L. C.</au><au>Consolo, Giancarlo</au><au>Giancarlo Consolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrical Analogue Computer of Microtubule’s Protofilament</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. This study put forward the possibility to build microtubule’s protofilament as a biotransistor.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4916202</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0522-5738</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2020, Vol.2020 (2020), p.1-10 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_39d76b8c43b14dc2878ed7396211b77f |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Amplification Analog circuits Analog computers Analysis Bioelectricity Biological products Biomedical materials Biopolymers Biotechnology Cell division Circuit design Damping Design Differential equations Dynamic stability Nanotechnology Nanowires Operational amplifiers Partial differential equations Resistors Runge-Kutta method Software Transistors |
title | The Electrical Analogue Computer of Microtubule’s Protofilament |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrical%20Analogue%20Computer%20of%20Microtubule%E2%80%99s%20Protofilament&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Fotsin,%20H.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2020/4916202&rft_dat=%3Cgale_doaj_%3EA697090927%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-fbbdc12fcb3a19bae488bfa6e804eebc329fb0860d0bcfbe2005759265d3a1913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449875111&rft_id=info:pmid/&rft_galeid=A697090927&rfr_iscdi=true |