Loading…

Use of a healthy volunteer imaging program to optimize clinical implementation of stereotactic MR-guided adaptive radiotherapy

MR-linacs (MRLs) have enabled the use of stereotactic magnetic resonance (MR) guided online adaptive radiotherapy (SMART) across many cancers. As data emerges to support SMART, uncertainty remains regarding optimal technical parameters, such as optimal patient positioning, immobilization, image qual...

Full description

Saved in:
Bibliographic Details
Published in:Technical innovations & patient support in radiation oncology 2020-12, Vol.16, p.70-76
Main Authors: Boyle, Patrick J., Huynh, Elizabeth, Boyle, Sara, Campbell, Jennifer, Penney, Jessica, Usta, Iquan, Neubauer Sugar, Emily, Hacker, Fred, Williams, Christopher, Cagney, Daniel, Mak, Raymond, Singer, Lisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MR-linacs (MRLs) have enabled the use of stereotactic magnetic resonance (MR) guided online adaptive radiotherapy (SMART) across many cancers. As data emerges to support SMART, uncertainty remains regarding optimal technical parameters, such as optimal patient positioning, immobilization, image quality, and contouring protocols. Prior to clinical implementation of SMART, we conducted a prospective study in healthy volunteers (HVs) to determine optimal technical parameters and to develop and practice a multidisciplinary SMART workflow. HVs 18 years or older were eligible to participate in this IRB-approved study. Using a 0.35 T MRL, simulated adaptive treatments were performed by a multi-disciplinary treatment team in HVs. For each scan, image quality parameters were assessed on a 5-point scale (5 = extremely high, 1 = extremely poor). Adaptive recontouring times were compared between HVs and subsequent clinical cases with a t-test. 18 simulated treatments were performed in HVs on MRL. Mean parameters for visibility of target, visibility of nearby organs, and overall image quality were 4.58, 4.62, and 4.62, respectively (range of 4–5 for all measures). In HVs, mean ART was 15.7 min (range 4–35), comparable to mean of 16.1 (range 7–33) in the clinical cases (p = 0.8963). Using HV cases, optimal simulation and contouring guidelines were developed across a range of disease sites and have since been implemented clinically. Prior to clinical implementation of SMART, scans of HVs on an MRL resulted in acceptable image quality and target visibility across a range of organs with similar ARTs to clinical SMART. We continue to utilize HV scans prior to clinical implementation of SMART in new disease sites and to further optimize target tracking and immobilization. Further study is needed to determine the optimal duration of HV scanning prior to clinical implementation.
ISSN:2405-6324
2405-6324
DOI:10.1016/j.tipsro.2020.10.004