Loading…

Partial Substitution of Chemical N with Solid Cow Manure Improved Soil Ecological Indicators and Crop Yield in a Wheat–Rice Rotation System

Alternative fertilizers are essential to minimizing the deteriorating effects of chemical fertilizers on soil and water quality/health. Accordingly, the present work investigated the effects of combined organic–inorganic fertilization (COIF) on wheat and rice yields, soil nutrients, and soil Cd accu...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2024-04, Vol.14 (4), p.700
Main Authors: Yu, Jintao, Zhang, Chun, Wang, Xuan, Li, Hongchuan, Kalkhajeh, Yusef Kianpoor, Hu, Hongxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alternative fertilizers are essential to minimizing the deteriorating effects of chemical fertilizers on soil and water quality/health. Accordingly, the present work investigated the effects of combined organic–inorganic fertilization (COIF) on wheat and rice yields, soil nutrients, and soil Cd accumulation. Hence, seven different treatments were set up: control (CK); conventional fertilization (CF); adequate fertilization (OF); organic fertilizer replacing 25% (T1) and 50% (T2) of OF; and organic nitrogen (N) replacing 25% (M1) and 50% (M2) of OF-N. Overall, significant increases occurred in the yields of COIF crops. Compared with the CF, the highest wheat and rice yields happened in the M1 treatment (with a difference of approximately 18.5%) (p < 0.05). COIF slightly alleviated soil acidification, and improved the cation exchange capacity (CEC) of the study soils. Furthermore, COIF treatments significantly increased the contents of total phosphorus, total potassium, available phosphorus, and available potassium by 6.35 to 16.9%, 3.17 to 10.9%, 5.53 to 28.7%, and 2.6 to 12%, respectively (p < 0.05). Nevertheless, negligible increases took place in the Cd content of COIF soils compared with that of the CK. Altogether, our results concluded that 25% replacement of OF-N by organic N (M1) effectively improved the fertility/ecological sustainability of the study soils.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy14040700