Loading…

Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes

Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a me...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-03, Vol.10 (6), p.2015
Main Authors: Yoon, Yeojoon, Kye, Homin, Yang, Woo Seok, Kang, Joon-Wun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10062015