Loading…
Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing
Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the m...
Saved in:
Published in: | Materials today bio 2024-08, Vol.27, p.101120, Article 101120 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83 |
container_end_page | |
container_issue | |
container_start_page | 101120 |
container_title | Materials today bio |
container_volume | 27 |
creator | Yang, Jielai Zhan, Zihang Li, Xingchen Hu, Mu Zhu, Yuan Xiao, Yunchao Xu, Xiangyang |
description | Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted] |
doi_str_mv | 10.1016/j.mtbio.2024.101120 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a1469eda9e24fd3978845da25207487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006424001790</els_id><doaj_id>oai_doaj_org_article_3a1469eda9e24fd3978845da25207487</doaj_id><sourcerecordid>3076765929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIRKu2vwAJzZHLLM7XJDkghAqFSpV6gStRJuNss5qdlCS7ov--2U6p2gsnJ_brx5bfpnlHYEWA9B83q20ZQlxRoPyQIRReNcdUaOgAev762fuoOct5AwBUag6g3zZHTGkpKIfj5vfFbpowxalLGGYfk8OxtXMJ8W8YD3GPLfva3aYwl1oZEo5hHQq22Vnv4zS2tae1zmGl2BLmdTvEGdsbtFP9nDZvvJ0ynj3Gk-bXxbef5z-6q-vvl-dfrjrHZV86oZxnXguqkRAGynrpkVmiJfXCDUQPveBKKIrWU8kkIdpT6sFxQK69YifN5cIdo92Yuu3WpjsTbTAPiZjWxqYS3ISmYnmvcbQaKfcj01IpLkZLBQXJlayszwvrdjdscXQ4l2SnF9CXlTncmHXcm2oCFaonlfDhkZDinx3mYrYh1wtNdsa4y4aB7GUvNNVVyhapSzHnhP5pDgFzcNpszIPT5uC0WZyuXe-fr_jU88_XKvi0CLAefR8wmewCztXckNCVepXw3wH3jmy7RA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076765929</pqid></control><display><type>article</type><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><source>PMC (PubMed Central)</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</creator><creatorcontrib>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</creatorcontrib><description>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2024.101120</identifier><identifier>PMID: 38975240</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D-printing ; Bone regeneration ; Bredigite scaffold ; Full Length ; Fullerol nanoparticle ; Reactive oxygen species</subject><ispartof>Materials today bio, 2024-08, Vol.27, p.101120, Article 101120</ispartof><rights>2024</rights><rights>2024 The Authors. Published by Elsevier Ltd.</rights><rights>2024 The Authors. Published by Elsevier Ltd. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</cites><orcidid>0000-0002-9230-7047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006424001790$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38975240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jielai</creatorcontrib><creatorcontrib>Zhan, Zihang</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Hu, Mu</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Xiao, Yunchao</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</description><subject>3D-printing</subject><subject>Bone regeneration</subject><subject>Bredigite scaffold</subject><subject>Full Length</subject><subject>Fullerol nanoparticle</subject><subject>Reactive oxygen species</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1vFDEMhkcIRKu2vwAJzZHLLM7XJDkghAqFSpV6gStRJuNss5qdlCS7ov--2U6p2gsnJ_brx5bfpnlHYEWA9B83q20ZQlxRoPyQIRReNcdUaOgAev762fuoOct5AwBUag6g3zZHTGkpKIfj5vfFbpowxalLGGYfk8OxtXMJ8W8YD3GPLfva3aYwl1oZEo5hHQq22Vnv4zS2tae1zmGl2BLmdTvEGdsbtFP9nDZvvJ0ynj3Gk-bXxbef5z-6q-vvl-dfrjrHZV86oZxnXguqkRAGynrpkVmiJfXCDUQPveBKKIrWU8kkIdpT6sFxQK69YifN5cIdo92Yuu3WpjsTbTAPiZjWxqYS3ISmYnmvcbQaKfcj01IpLkZLBQXJlayszwvrdjdscXQ4l2SnF9CXlTncmHXcm2oCFaonlfDhkZDinx3mYrYh1wtNdsa4y4aB7GUvNNVVyhapSzHnhP5pDgFzcNpszIPT5uC0WZyuXe-fr_jU88_XKvi0CLAefR8wmewCztXckNCVepXw3wH3jmy7RA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Jielai</creator><creator>Zhan, Zihang</creator><creator>Li, Xingchen</creator><creator>Hu, Mu</creator><creator>Zhu, Yuan</creator><creator>Xiao, Yunchao</creator><creator>Xu, Xiangyang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9230-7047</orcidid></search><sort><creationdate>20240801</creationdate><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><author>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-printing</topic><topic>Bone regeneration</topic><topic>Bredigite scaffold</topic><topic>Full Length</topic><topic>Fullerol nanoparticle</topic><topic>Reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jielai</creatorcontrib><creatorcontrib>Zhan, Zihang</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Hu, Mu</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Xiao, Yunchao</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jielai</au><au>Zhan, Zihang</au><au>Li, Xingchen</au><au>Hu, Mu</au><au>Zhu, Yuan</au><au>Xiao, Yunchao</au><au>Xu, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>27</volume><spage>101120</spage><pages>101120-</pages><artnum>101120</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38975240</pmid><doi>10.1016/j.mtbio.2024.101120</doi><orcidid>https://orcid.org/0000-0002-9230-7047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2590-0064 |
ispartof | Materials today bio, 2024-08, Vol.27, p.101120, Article 101120 |
issn | 2590-0064 2590-0064 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3a1469eda9e24fd3978845da25207487 |
source | PMC (PubMed Central); ScienceDirect - Connect here FIRST to enable access |
subjects | 3D-printing Bone regeneration Bredigite scaffold Full Length Fullerol nanoparticle Reactive oxygen species |
title | Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T11%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fullerol-reinforced%20antioxidantive%203D-printed%20bredigite%20scaffold%20for%20accelerating%20bone%20healing&rft.jtitle=Materials%20today%20bio&rft.au=Yang,%20Jielai&rft.date=2024-08-01&rft.volume=27&rft.spage=101120&rft.pages=101120-&rft.artnum=101120&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2024.101120&rft_dat=%3Cproquest_doaj_%3E3076765929%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076765929&rft_id=info:pmid/38975240&rfr_iscdi=true |