Loading…

Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing

Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the m...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2024-08, Vol.27, p.101120, Article 101120
Main Authors: Yang, Jielai, Zhan, Zihang, Li, Xingchen, Hu, Mu, Zhu, Yuan, Xiao, Yunchao, Xu, Xiangyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83
container_end_page
container_issue
container_start_page 101120
container_title Materials today bio
container_volume 27
creator Yang, Jielai
Zhan, Zihang
Li, Xingchen
Hu, Mu
Zhu, Yuan
Xiao, Yunchao
Xu, Xiangyang
description Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair. The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]
doi_str_mv 10.1016/j.mtbio.2024.101120
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a1469eda9e24fd3978845da25207487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006424001790</els_id><doaj_id>oai_doaj_org_article_3a1469eda9e24fd3978845da25207487</doaj_id><sourcerecordid>3076765929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIRKu2vwAJzZHLLM7XJDkghAqFSpV6gStRJuNss5qdlCS7ov--2U6p2gsnJ_brx5bfpnlHYEWA9B83q20ZQlxRoPyQIRReNcdUaOgAev762fuoOct5AwBUag6g3zZHTGkpKIfj5vfFbpowxalLGGYfk8OxtXMJ8W8YD3GPLfva3aYwl1oZEo5hHQq22Vnv4zS2tae1zmGl2BLmdTvEGdsbtFP9nDZvvJ0ynj3Gk-bXxbef5z-6q-vvl-dfrjrHZV86oZxnXguqkRAGynrpkVmiJfXCDUQPveBKKIrWU8kkIdpT6sFxQK69YifN5cIdo92Yuu3WpjsTbTAPiZjWxqYS3ISmYnmvcbQaKfcj01IpLkZLBQXJlayszwvrdjdscXQ4l2SnF9CXlTncmHXcm2oCFaonlfDhkZDinx3mYrYh1wtNdsa4y4aB7GUvNNVVyhapSzHnhP5pDgFzcNpszIPT5uC0WZyuXe-fr_jU88_XKvi0CLAefR8wmewCztXckNCVepXw3wH3jmy7RA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076765929</pqid></control><display><type>article</type><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><source>PMC (PubMed Central)</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</creator><creatorcontrib>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</creatorcontrib><description>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair. The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2024.101120</identifier><identifier>PMID: 38975240</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D-printing ; Bone regeneration ; Bredigite scaffold ; Full Length ; Fullerol nanoparticle ; Reactive oxygen species</subject><ispartof>Materials today bio, 2024-08, Vol.27, p.101120, Article 101120</ispartof><rights>2024</rights><rights>2024 The Authors. Published by Elsevier Ltd.</rights><rights>2024 The Authors. Published by Elsevier Ltd. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</cites><orcidid>0000-0002-9230-7047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006424001790$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38975240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jielai</creatorcontrib><creatorcontrib>Zhan, Zihang</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Hu, Mu</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Xiao, Yunchao</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair. The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</description><subject>3D-printing</subject><subject>Bone regeneration</subject><subject>Bredigite scaffold</subject><subject>Full Length</subject><subject>Fullerol nanoparticle</subject><subject>Reactive oxygen species</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1vFDEMhkcIRKu2vwAJzZHLLM7XJDkghAqFSpV6gStRJuNss5qdlCS7ov--2U6p2gsnJ_brx5bfpnlHYEWA9B83q20ZQlxRoPyQIRReNcdUaOgAev762fuoOct5AwBUag6g3zZHTGkpKIfj5vfFbpowxalLGGYfk8OxtXMJ8W8YD3GPLfva3aYwl1oZEo5hHQq22Vnv4zS2tae1zmGl2BLmdTvEGdsbtFP9nDZvvJ0ynj3Gk-bXxbef5z-6q-vvl-dfrjrHZV86oZxnXguqkRAGynrpkVmiJfXCDUQPveBKKIrWU8kkIdpT6sFxQK69YifN5cIdo92Yuu3WpjsTbTAPiZjWxqYS3ISmYnmvcbQaKfcj01IpLkZLBQXJlayszwvrdjdscXQ4l2SnF9CXlTncmHXcm2oCFaonlfDhkZDinx3mYrYh1wtNdsa4y4aB7GUvNNVVyhapSzHnhP5pDgFzcNpszIPT5uC0WZyuXe-fr_jU88_XKvi0CLAefR8wmewCztXckNCVepXw3wH3jmy7RA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Jielai</creator><creator>Zhan, Zihang</creator><creator>Li, Xingchen</creator><creator>Hu, Mu</creator><creator>Zhu, Yuan</creator><creator>Xiao, Yunchao</creator><creator>Xu, Xiangyang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9230-7047</orcidid></search><sort><creationdate>20240801</creationdate><title>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</title><author>Yang, Jielai ; Zhan, Zihang ; Li, Xingchen ; Hu, Mu ; Zhu, Yuan ; Xiao, Yunchao ; Xu, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-printing</topic><topic>Bone regeneration</topic><topic>Bredigite scaffold</topic><topic>Full Length</topic><topic>Fullerol nanoparticle</topic><topic>Reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jielai</creatorcontrib><creatorcontrib>Zhan, Zihang</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Hu, Mu</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Xiao, Yunchao</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jielai</au><au>Zhan, Zihang</au><au>Li, Xingchen</au><au>Hu, Mu</au><au>Zhu, Yuan</au><au>Xiao, Yunchao</au><au>Xu, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>27</volume><spage>101120</spage><pages>101120-</pages><artnum>101120</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted “FPBS”) for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair. The FPBS, fabricated using the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, shows excellent ROS-scavenging ability and intrinsically osteoinductive properties, proving an effective strategy for bone regeneration in pathological conditions, such as diabetes, osteoporosis or chronic inflammation. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38975240</pmid><doi>10.1016/j.mtbio.2024.101120</doi><orcidid>https://orcid.org/0000-0002-9230-7047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2024-08, Vol.27, p.101120, Article 101120
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3a1469eda9e24fd3978845da25207487
source PMC (PubMed Central); ScienceDirect - Connect here FIRST to enable access
subjects 3D-printing
Bone regeneration
Bredigite scaffold
Full Length
Fullerol nanoparticle
Reactive oxygen species
title Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T11%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fullerol-reinforced%20antioxidantive%203D-printed%20bredigite%20scaffold%20for%20accelerating%20bone%20healing&rft.jtitle=Materials%20today%20bio&rft.au=Yang,%20Jielai&rft.date=2024-08-01&rft.volume=27&rft.spage=101120&rft.pages=101120-&rft.artnum=101120&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2024.101120&rft_dat=%3Cproquest_doaj_%3E3076765929%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-58cf3f9529e11308af7fe3a1972f5cb19b6548582eaf2737119f22f0c40e49f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076765929&rft_id=info:pmid/38975240&rfr_iscdi=true