Loading…

Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm

Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effect...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669
Main Authors: Bhol, Rajeswari, Swain, Sarat Chandra, Dash, Ritesh, Jyotheeswara Reddy, K., Dhanamjayulu, C., Kotb, Hossam, Emara, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3
container_end_page e30669
container_issue 10
container_start_page e30669
container_title Heliyon
container_volume 10
creator Bhol, Rajeswari
Swain, Sarat Chandra
Dash, Ritesh
Jyotheeswara Reddy, K.
Dhanamjayulu, C.
Kotb, Hossam
Emara, Ahmed
description Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.
doi_str_mv 10.1016/j.heliyon.2024.e30669
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024067008</els_id><doaj_id>oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8</doaj_id><sourcerecordid>3057694751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpTwDlyGUXfzs5oVLoslIRHOBsOfYk8SqJg-1U2v56vOxS2lMv9sieeebrLYq3GK0xwuLDbt3D4PZ-WhNE2BooEqJ-UZwThviqYgy9fGSfFZcx7hBCmFeilvR1cUYrKREl6Lzof0BofRj1ZKDUkx720cXSt-Xnm-2mjMs8-5DK0Zngu-BsuUQ3deXmqvRzcqO7B1sGiCk4k7L5yQ_pPrOm8ps2vZsycuh8cKkf3xSvWj1EuDzdF8Wvmy8_r7-ubr9vttdXtyvDMU_5ZBQzQgAzyoioa8YkamzdGGyM0Exog4zBnLS2sUjglmkC0OZ-oGkp0_Si2B651uudmoMbddgrr536--BDp3RIzgygqBa8lUhjKxHjEjShkmDGWmFtY2yVWR-PrHlpRrAGphT08AT69Gdyver8ncIYo1z-gfD-RAj-95IHpUYXDQyDnsAvUVHMaYUkF-x5V8SlqJnkOLvyo2veSowB2oeSMFIHgaidOglEHQSijgLJce8e9_MQ9U8O_xuGvKE7B0FF4yBLw7oAJuURumdS_AHO6NEE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057694751</pqid></control><display><type>article</type><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</creator><creatorcontrib>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</creatorcontrib><description>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e30669</identifier><identifier>PMID: 38770320</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithm ; algorithms ; Boltzmann Machine Algorithm ; data collection ; electric potential difference ; energy conversion ; generators (equipment) ; PSO ; PSO-LSTM ; Search space ; wind power</subject><ispartof>Heliyon, 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024067008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38770320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhol, Rajeswari</creatorcontrib><creatorcontrib>Swain, Sarat Chandra</creatorcontrib><creatorcontrib>Dash, Ritesh</creatorcontrib><creatorcontrib>Jyotheeswara Reddy, K.</creatorcontrib><creatorcontrib>Dhanamjayulu, C.</creatorcontrib><creatorcontrib>Kotb, Hossam</creatorcontrib><creatorcontrib>Emara, Ahmed</creatorcontrib><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</description><subject>Algorithm</subject><subject>algorithms</subject><subject>Boltzmann Machine Algorithm</subject><subject>data collection</subject><subject>electric potential difference</subject><subject>energy conversion</subject><subject>generators (equipment)</subject><subject>PSO</subject><subject>PSO-LSTM</subject><subject>Search space</subject><subject>wind power</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXpTwDlyGUXfzs5oVLoslIRHOBsOfYk8SqJg-1U2v56vOxS2lMv9sieeebrLYq3GK0xwuLDbt3D4PZ-WhNE2BooEqJ-UZwThviqYgy9fGSfFZcx7hBCmFeilvR1cUYrKREl6Lzof0BofRj1ZKDUkx720cXSt-Xnm-2mjMs8-5DK0Zngu-BsuUQ3deXmqvRzcqO7B1sGiCk4k7L5yQ_pPrOm8ps2vZsycuh8cKkf3xSvWj1EuDzdF8Wvmy8_r7-ubr9vttdXtyvDMU_5ZBQzQgAzyoioa8YkamzdGGyM0Exog4zBnLS2sUjglmkC0OZ-oGkp0_Si2B651uudmoMbddgrr536--BDp3RIzgygqBa8lUhjKxHjEjShkmDGWmFtY2yVWR-PrHlpRrAGphT08AT69Gdyver8ncIYo1z-gfD-RAj-95IHpUYXDQyDnsAvUVHMaYUkF-x5V8SlqJnkOLvyo2veSowB2oeSMFIHgaidOglEHQSijgLJce8e9_MQ9U8O_xuGvKE7B0FF4yBLw7oAJuURumdS_AHO6NEE</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Bhol, Rajeswari</creator><creator>Swain, Sarat Chandra</creator><creator>Dash, Ritesh</creator><creator>Jyotheeswara Reddy, K.</creator><creator>Dhanamjayulu, C.</creator><creator>Kotb, Hossam</creator><creator>Emara, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240530</creationdate><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><author>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm</topic><topic>algorithms</topic><topic>Boltzmann Machine Algorithm</topic><topic>data collection</topic><topic>electric potential difference</topic><topic>energy conversion</topic><topic>generators (equipment)</topic><topic>PSO</topic><topic>PSO-LSTM</topic><topic>Search space</topic><topic>wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhol, Rajeswari</creatorcontrib><creatorcontrib>Swain, Sarat Chandra</creatorcontrib><creatorcontrib>Dash, Ritesh</creatorcontrib><creatorcontrib>Jyotheeswara Reddy, K.</creatorcontrib><creatorcontrib>Dhanamjayulu, C.</creatorcontrib><creatorcontrib>Kotb, Hossam</creatorcontrib><creatorcontrib>Emara, Ahmed</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhol, Rajeswari</au><au>Swain, Sarat Chandra</au><au>Dash, Ritesh</au><au>Jyotheeswara Reddy, K.</au><au>Dhanamjayulu, C.</au><au>Kotb, Hossam</au><au>Emara, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>e30669</spage><epage>e30669</epage><pages>e30669-e30669</pages><artnum>e30669</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38770320</pmid><doi>10.1016/j.heliyon.2024.e30669</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8
source ScienceDirect; PubMed Central
subjects Algorithm
algorithms
Boltzmann Machine Algorithm
data collection
electric potential difference
energy conversion
generators (equipment)
PSO
PSO-LSTM
Search space
wind power
title Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20DFIG%20support%20microgrid%20using%20GA%20optimized%20restricted%20Boltzmann%20Machine%20algorithm&rft.jtitle=Heliyon&rft.au=Bhol,%20Rajeswari&rft.date=2024-05-30&rft.volume=10&rft.issue=10&rft.spage=e30669&rft.epage=e30669&rft.pages=e30669-e30669&rft.artnum=e30669&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e30669&rft_dat=%3Cproquest_doaj_%3E3057694751%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057694751&rft_id=info:pmid/38770320&rfr_iscdi=true