Loading…
Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm
Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effect...
Saved in:
Published in: | Heliyon 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3 |
container_end_page | e30669 |
container_issue | 10 |
container_start_page | e30669 |
container_title | Heliyon |
container_volume | 10 |
creator | Bhol, Rajeswari Swain, Sarat Chandra Dash, Ritesh Jyotheeswara Reddy, K. Dhanamjayulu, C. Kotb, Hossam Emara, Ahmed |
description | Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations. |
doi_str_mv | 10.1016/j.heliyon.2024.e30669 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024067008</els_id><doaj_id>oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8</doaj_id><sourcerecordid>3057694751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpTwDlyGUXfzs5oVLoslIRHOBsOfYk8SqJg-1U2v56vOxS2lMv9sieeebrLYq3GK0xwuLDbt3D4PZ-WhNE2BooEqJ-UZwThviqYgy9fGSfFZcx7hBCmFeilvR1cUYrKREl6Lzof0BofRj1ZKDUkx720cXSt-Xnm-2mjMs8-5DK0Zngu-BsuUQ3deXmqvRzcqO7B1sGiCk4k7L5yQ_pPrOm8ps2vZsycuh8cKkf3xSvWj1EuDzdF8Wvmy8_r7-ubr9vttdXtyvDMU_5ZBQzQgAzyoioa8YkamzdGGyM0Exog4zBnLS2sUjglmkC0OZ-oGkp0_Si2B651uudmoMbddgrr536--BDp3RIzgygqBa8lUhjKxHjEjShkmDGWmFtY2yVWR-PrHlpRrAGphT08AT69Gdyver8ncIYo1z-gfD-RAj-95IHpUYXDQyDnsAvUVHMaYUkF-x5V8SlqJnkOLvyo2veSowB2oeSMFIHgaidOglEHQSijgLJce8e9_MQ9U8O_xuGvKE7B0FF4yBLw7oAJuURumdS_AHO6NEE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057694751</pqid></control><display><type>article</type><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</creator><creatorcontrib>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</creatorcontrib><description>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e30669</identifier><identifier>PMID: 38770320</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithm ; algorithms ; Boltzmann Machine Algorithm ; data collection ; electric potential difference ; energy conversion ; generators (equipment) ; PSO ; PSO-LSTM ; Search space ; wind power</subject><ispartof>Heliyon, 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024067008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38770320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhol, Rajeswari</creatorcontrib><creatorcontrib>Swain, Sarat Chandra</creatorcontrib><creatorcontrib>Dash, Ritesh</creatorcontrib><creatorcontrib>Jyotheeswara Reddy, K.</creatorcontrib><creatorcontrib>Dhanamjayulu, C.</creatorcontrib><creatorcontrib>Kotb, Hossam</creatorcontrib><creatorcontrib>Emara, Ahmed</creatorcontrib><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</description><subject>Algorithm</subject><subject>algorithms</subject><subject>Boltzmann Machine Algorithm</subject><subject>data collection</subject><subject>electric potential difference</subject><subject>energy conversion</subject><subject>generators (equipment)</subject><subject>PSO</subject><subject>PSO-LSTM</subject><subject>Search space</subject><subject>wind power</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXpTwDlyGUXfzs5oVLoslIRHOBsOfYk8SqJg-1U2v56vOxS2lMv9sieeebrLYq3GK0xwuLDbt3D4PZ-WhNE2BooEqJ-UZwThviqYgy9fGSfFZcx7hBCmFeilvR1cUYrKREl6Lzof0BofRj1ZKDUkx720cXSt-Xnm-2mjMs8-5DK0Zngu-BsuUQ3deXmqvRzcqO7B1sGiCk4k7L5yQ_pPrOm8ps2vZsycuh8cKkf3xSvWj1EuDzdF8Wvmy8_r7-ubr9vttdXtyvDMU_5ZBQzQgAzyoioa8YkamzdGGyM0Exog4zBnLS2sUjglmkC0OZ-oGkp0_Si2B651uudmoMbddgrr536--BDp3RIzgygqBa8lUhjKxHjEjShkmDGWmFtY2yVWR-PrHlpRrAGphT08AT69Gdyver8ncIYo1z-gfD-RAj-95IHpUYXDQyDnsAvUVHMaYUkF-x5V8SlqJnkOLvyo2veSowB2oeSMFIHgaidOglEHQSijgLJce8e9_MQ9U8O_xuGvKE7B0FF4yBLw7oAJuURumdS_AHO6NEE</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Bhol, Rajeswari</creator><creator>Swain, Sarat Chandra</creator><creator>Dash, Ritesh</creator><creator>Jyotheeswara Reddy, K.</creator><creator>Dhanamjayulu, C.</creator><creator>Kotb, Hossam</creator><creator>Emara, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240530</creationdate><title>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</title><author>Bhol, Rajeswari ; Swain, Sarat Chandra ; Dash, Ritesh ; Jyotheeswara Reddy, K. ; Dhanamjayulu, C. ; Kotb, Hossam ; Emara, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm</topic><topic>algorithms</topic><topic>Boltzmann Machine Algorithm</topic><topic>data collection</topic><topic>electric potential difference</topic><topic>energy conversion</topic><topic>generators (equipment)</topic><topic>PSO</topic><topic>PSO-LSTM</topic><topic>Search space</topic><topic>wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhol, Rajeswari</creatorcontrib><creatorcontrib>Swain, Sarat Chandra</creatorcontrib><creatorcontrib>Dash, Ritesh</creatorcontrib><creatorcontrib>Jyotheeswara Reddy, K.</creatorcontrib><creatorcontrib>Dhanamjayulu, C.</creatorcontrib><creatorcontrib>Kotb, Hossam</creatorcontrib><creatorcontrib>Emara, Ahmed</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhol, Rajeswari</au><au>Swain, Sarat Chandra</au><au>Dash, Ritesh</au><au>Jyotheeswara Reddy, K.</au><au>Dhanamjayulu, C.</au><au>Kotb, Hossam</au><au>Emara, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>e30669</spage><epage>e30669</epage><pages>e30669-e30669</pages><artnum>e30669</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38770320</pmid><doi>10.1016/j.heliyon.2024.e30669</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2024-05, Vol.10 (10), p.e30669-e30669, Article e30669 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3a65f70a1d70457ea2372144f6ddbcd8 |
source | ScienceDirect; PubMed Central |
subjects | Algorithm algorithms Boltzmann Machine Algorithm data collection electric potential difference energy conversion generators (equipment) PSO PSO-LSTM Search space wind power |
title | Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20DFIG%20support%20microgrid%20using%20GA%20optimized%20restricted%20Boltzmann%20Machine%20algorithm&rft.jtitle=Heliyon&rft.au=Bhol,%20Rajeswari&rft.date=2024-05-30&rft.volume=10&rft.issue=10&rft.spage=e30669&rft.epage=e30669&rft.pages=e30669-e30669&rft.artnum=e30669&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e30669&rft_dat=%3Cproquest_doaj_%3E3057694751%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-c5431422e143426994470bd9bc1cc6a46ac0cc152fdbd061f4a2eef877ebf34a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057694751&rft_id=info:pmid/38770320&rfr_iscdi=true |