Loading…

Revealing the microbial composition changes and relationship with Fusarium caused by rot disease in the Crocus sativus L

Rot disease caused by Fusarium poses a formidable threat to the growth of saffron (Crocus sativus L.), resulting in substantial damage to both yield and quality. It is paramount to delve into the root causes of rot disease in saffron to optimize both yield and quality. Existing preventive and treatm...

Full description

Saved in:
Bibliographic Details
Published in:Annals of microbiology 2024-07, Vol.74 (1), p.24-24, Article 24
Main Authors: Song, Jia, Xi, Xiaoyuan, Qian, Xiaodong, Li, Jing, Tao, Yuanyuan, Li, Liqin, Zhou, Guifen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rot disease caused by Fusarium poses a formidable threat to the growth of saffron (Crocus sativus L.), resulting in substantial damage to both yield and quality. It is paramount to delve into the root causes of rot disease in saffron to optimize both yield and quality. Existing preventive and treatment modalities have exerted deleterious effects on corms and the natural environment. Consequently, the quest for efficacious and eco-friendly methods such as biological control agents has become an urgent imperative. The disparate distribution of microbial communities between rhizospheric microorganisms and saffron serves as the foundational exploration for uncovering the underlying causes of rot disease. Samples from various saffron organs and rhizosphere soil were gathered, and the sequencing data from the microbial communities were interpreted using 16S rRNA and ITS gene sequencing methods. This facilitated an in-depth examination of the composition and changes of microorganisms in both healthy and diseased saffron plants. The findings indicated rot disease reduced the abundance and diversity of microorganisms in saffron, and the fungal co-occurrence networks were less stable and their communities were more sensitive to rot disease than the bacterial community. Fusarium was the predominant genus in diseased samples, accounting for 99.19% and 89.77% of the communities in diseased leaves and corms. With corms and leaves displaying heightened susceptibility to infection compared to other plant organs. Some of the beneficial bacterial taxa enriched in the diseased plants were also identified in networks, they showed an antagonistic relationship with Fusarium, suggesting a potential for these bacteria to be used in biologically based control strategies against rot disease. These insights could prove invaluable for the development of biocontrol agents aimed at combating this plant ailment. These findings significantly advance our understanding of saffron-microbiome interactions and could provide fundamental and important data for improving saffron yield and quality in the process of sustainable development.
ISSN:1869-2044
1590-4261
1869-2044
DOI:10.1186/s13213-024-01770-x