Loading…
A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment
All- trans -retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: C...
Saved in:
Published in: | Scientific reports 2023-09, Vol.13 (1), p.14907-14907, Article 14907 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-9e7400b47f89b78e8ba17c33436cabaa756724c53b923718ad3938d50f9a29d53 |
container_end_page | 14907 |
container_issue | 1 |
container_start_page | 14907 |
container_title | Scientific reports |
container_volume | 13 |
creator | Wei, Cheng-Hsin Huang, Lu Kreh, Blair Liu, Xiuxia Tyutyunyk-Massey, Liliya Kawakami, Masanori Chen, Zibo Shi, Mi Kozlov, Serguei Chan, King C. Andresson, Thorkell Carrington, Mary Vuligonda, Vidyasagar Sanders, Martin E. Horowitz, Amir Hwu, Patrick Peng, Weiyi Dmitrovsky, Ethan Liu, Xi |
description | All-
trans
-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8
+
T cell depletion antagonized ATRA’s anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA’s anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice—a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4
+
T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4
+
more than CD8
+
T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers. |
doi_str_mv | 10.1038/s41598-023-41690-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a6d32daebaf4a6c91b60abe62aa93bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a6d32daebaf4a6c91b60abe62aa93bd</doaj_id><sourcerecordid>2863292994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-9e7400b47f89b78e8ba17c33436cabaa756724c53b923718ad3938d50f9a29d53</originalsourceid><addsrcrecordid>eNp9kktuFDEQhlsIRKKQC7CyxIZNg1_dba9QFPGIFIkNrK2yu2bGQ7c92O5IySm4C_fgTHhmwiMs8MZV5b8-2eW_aZ4z-opRoV5nyTqtWspFK1mvads9ak45lV3LBeeP_4pPmvOct7SujmvJ9NPmRAy90oOmp823CxLiDU4kYfEhekfA-bFmDnclpvbHdwLrGHwuBEI5hHeYiZ_nJSBxG3RfdtGHUjtyFUFwSHwg0xLWxO2zlIm9JTAVTL7WygZJWeaYfiFm71LEcONTDDOG8qx5soIp4_n9ftZ8fvf20-WH9vrj-6vLi-vWyV6XVuMgKbVyWCltB4XKAhucEFL0DizA0PUDl64TVnMxMAWj0EKNHV1p4HrsxFlzdeSOEbZml_wM6dZE8OZQiGltIBXvJjQC-lHwEdDCSkLvNLM9BYs9B9DCjpX15sjaLXbG0dVnJJgeQB-eBL8x63hjGJWaKyYq4eU9IcWvC-ZiZp8dThMEjEs2XPWCa661rNIX_0i3cUmhzmqv4qqTXPRVxY-qOt2cE65-34ZRszeQORrIVAOZg4HMfibi2JR3-8_C9Af9n66fvnjLzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862854236</pqid></control><display><type>article</type><title>A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wei, Cheng-Hsin ; Huang, Lu ; Kreh, Blair ; Liu, Xiuxia ; Tyutyunyk-Massey, Liliya ; Kawakami, Masanori ; Chen, Zibo ; Shi, Mi ; Kozlov, Serguei ; Chan, King C. ; Andresson, Thorkell ; Carrington, Mary ; Vuligonda, Vidyasagar ; Sanders, Martin E. ; Horowitz, Amir ; Hwu, Patrick ; Peng, Weiyi ; Dmitrovsky, Ethan ; Liu, Xi</creator><creatorcontrib>Wei, Cheng-Hsin ; Huang, Lu ; Kreh, Blair ; Liu, Xiuxia ; Tyutyunyk-Massey, Liliya ; Kawakami, Masanori ; Chen, Zibo ; Shi, Mi ; Kozlov, Serguei ; Chan, King C. ; Andresson, Thorkell ; Carrington, Mary ; Vuligonda, Vidyasagar ; Sanders, Martin E. ; Horowitz, Amir ; Hwu, Patrick ; Peng, Weiyi ; Dmitrovsky, Ethan ; Liu, Xi</creatorcontrib><description>All-
trans
-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8
+
T cell depletion antagonized ATRA’s anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA’s anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice—a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4
+
T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4
+
more than CD8
+
T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-41690-5</identifier><identifier>PMID: 37689790</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1612 ; 631/67/580 ; 692/308/153 ; 692/308/2778 ; Agonists ; CD38 antigen ; CD4 antigen ; CD8 antigen ; Cell differentiation ; Combined treatment ; Humanities and Social Sciences ; Immune checkpoint inhibitors ; Immunodeficiency ; Interleukin 13 ; Interleukin 5 ; Lung cancer ; Lymphocytes ; Lymphocytes T ; multidisciplinary ; PD-L1 protein ; Pharmacokinetics ; Retinoic acid ; Retinoic acid receptors ; Science ; Science (multidisciplinary) ; Statistical analysis ; Stroma ; Tumor microenvironment ; Tumorigenicity ; Tumors</subject><ispartof>Scientific reports, 2023-09, Vol.13 (1), p.14907-14907, Article 14907</ispartof><rights>The Author(s) 2023</rights><rights>Springer Nature Limited 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-9e7400b47f89b78e8ba17c33436cabaa756724c53b923718ad3938d50f9a29d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862854236/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862854236?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Wei, Cheng-Hsin</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Kreh, Blair</creatorcontrib><creatorcontrib>Liu, Xiuxia</creatorcontrib><creatorcontrib>Tyutyunyk-Massey, Liliya</creatorcontrib><creatorcontrib>Kawakami, Masanori</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Shi, Mi</creatorcontrib><creatorcontrib>Kozlov, Serguei</creatorcontrib><creatorcontrib>Chan, King C.</creatorcontrib><creatorcontrib>Andresson, Thorkell</creatorcontrib><creatorcontrib>Carrington, Mary</creatorcontrib><creatorcontrib>Vuligonda, Vidyasagar</creatorcontrib><creatorcontrib>Sanders, Martin E.</creatorcontrib><creatorcontrib>Horowitz, Amir</creatorcontrib><creatorcontrib>Hwu, Patrick</creatorcontrib><creatorcontrib>Peng, Weiyi</creatorcontrib><creatorcontrib>Dmitrovsky, Ethan</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><title>A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>All-
trans
-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8
+
T cell depletion antagonized ATRA’s anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA’s anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice—a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4
+
T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4
+
more than CD8
+
T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.</description><subject>631/67/1612</subject><subject>631/67/580</subject><subject>692/308/153</subject><subject>692/308/2778</subject><subject>Agonists</subject><subject>CD38 antigen</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell differentiation</subject><subject>Combined treatment</subject><subject>Humanities and Social Sciences</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunodeficiency</subject><subject>Interleukin 13</subject><subject>Interleukin 5</subject><subject>Lung cancer</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>multidisciplinary</subject><subject>PD-L1 protein</subject><subject>Pharmacokinetics</subject><subject>Retinoic acid</subject><subject>Retinoic acid receptors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical analysis</subject><subject>Stroma</subject><subject>Tumor microenvironment</subject><subject>Tumorigenicity</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktuFDEQhlsIRKKQC7CyxIZNg1_dba9QFPGIFIkNrK2yu2bGQ7c92O5IySm4C_fgTHhmwiMs8MZV5b8-2eW_aZ4z-opRoV5nyTqtWspFK1mvads9ak45lV3LBeeP_4pPmvOct7SujmvJ9NPmRAy90oOmp823CxLiDU4kYfEhekfA-bFmDnclpvbHdwLrGHwuBEI5hHeYiZ_nJSBxG3RfdtGHUjtyFUFwSHwg0xLWxO2zlIm9JTAVTL7WygZJWeaYfiFm71LEcONTDDOG8qx5soIp4_n9ftZ8fvf20-WH9vrj-6vLi-vWyV6XVuMgKbVyWCltB4XKAhucEFL0DizA0PUDl64TVnMxMAWj0EKNHV1p4HrsxFlzdeSOEbZml_wM6dZE8OZQiGltIBXvJjQC-lHwEdDCSkLvNLM9BYs9B9DCjpX15sjaLXbG0dVnJJgeQB-eBL8x63hjGJWaKyYq4eU9IcWvC-ZiZp8dThMEjEs2XPWCa661rNIX_0i3cUmhzmqv4qqTXPRVxY-qOt2cE65-34ZRszeQORrIVAOZg4HMfibi2JR3-8_C9Af9n66fvnjLzw</recordid><startdate>20230909</startdate><enddate>20230909</enddate><creator>Wei, Cheng-Hsin</creator><creator>Huang, Lu</creator><creator>Kreh, Blair</creator><creator>Liu, Xiuxia</creator><creator>Tyutyunyk-Massey, Liliya</creator><creator>Kawakami, Masanori</creator><creator>Chen, Zibo</creator><creator>Shi, Mi</creator><creator>Kozlov, Serguei</creator><creator>Chan, King C.</creator><creator>Andresson, Thorkell</creator><creator>Carrington, Mary</creator><creator>Vuligonda, Vidyasagar</creator><creator>Sanders, Martin E.</creator><creator>Horowitz, Amir</creator><creator>Hwu, Patrick</creator><creator>Peng, Weiyi</creator><creator>Dmitrovsky, Ethan</creator><creator>Liu, Xi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230909</creationdate><title>A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment</title><author>Wei, Cheng-Hsin ; Huang, Lu ; Kreh, Blair ; Liu, Xiuxia ; Tyutyunyk-Massey, Liliya ; Kawakami, Masanori ; Chen, Zibo ; Shi, Mi ; Kozlov, Serguei ; Chan, King C. ; Andresson, Thorkell ; Carrington, Mary ; Vuligonda, Vidyasagar ; Sanders, Martin E. ; Horowitz, Amir ; Hwu, Patrick ; Peng, Weiyi ; Dmitrovsky, Ethan ; Liu, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-9e7400b47f89b78e8ba17c33436cabaa756724c53b923718ad3938d50f9a29d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/67/1612</topic><topic>631/67/580</topic><topic>692/308/153</topic><topic>692/308/2778</topic><topic>Agonists</topic><topic>CD38 antigen</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell differentiation</topic><topic>Combined treatment</topic><topic>Humanities and Social Sciences</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunodeficiency</topic><topic>Interleukin 13</topic><topic>Interleukin 5</topic><topic>Lung cancer</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>multidisciplinary</topic><topic>PD-L1 protein</topic><topic>Pharmacokinetics</topic><topic>Retinoic acid</topic><topic>Retinoic acid receptors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical analysis</topic><topic>Stroma</topic><topic>Tumor microenvironment</topic><topic>Tumorigenicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Cheng-Hsin</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Kreh, Blair</creatorcontrib><creatorcontrib>Liu, Xiuxia</creatorcontrib><creatorcontrib>Tyutyunyk-Massey, Liliya</creatorcontrib><creatorcontrib>Kawakami, Masanori</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Shi, Mi</creatorcontrib><creatorcontrib>Kozlov, Serguei</creatorcontrib><creatorcontrib>Chan, King C.</creatorcontrib><creatorcontrib>Andresson, Thorkell</creatorcontrib><creatorcontrib>Carrington, Mary</creatorcontrib><creatorcontrib>Vuligonda, Vidyasagar</creatorcontrib><creatorcontrib>Sanders, Martin E.</creatorcontrib><creatorcontrib>Horowitz, Amir</creatorcontrib><creatorcontrib>Hwu, Patrick</creatorcontrib><creatorcontrib>Peng, Weiyi</creatorcontrib><creatorcontrib>Dmitrovsky, Ethan</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Cheng-Hsin</au><au>Huang, Lu</au><au>Kreh, Blair</au><au>Liu, Xiuxia</au><au>Tyutyunyk-Massey, Liliya</au><au>Kawakami, Masanori</au><au>Chen, Zibo</au><au>Shi, Mi</au><au>Kozlov, Serguei</au><au>Chan, King C.</au><au>Andresson, Thorkell</au><au>Carrington, Mary</au><au>Vuligonda, Vidyasagar</au><au>Sanders, Martin E.</au><au>Horowitz, Amir</au><au>Hwu, Patrick</au><au>Peng, Weiyi</au><au>Dmitrovsky, Ethan</au><au>Liu, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-09-09</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>14907</spage><epage>14907</epage><pages>14907-14907</pages><artnum>14907</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>All-
trans
-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8
+
T cell depletion antagonized ATRA’s anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA’s anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice—a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4
+
T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4
+
more than CD8
+
T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37689790</pmid><doi>10.1038/s41598-023-41690-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-09, Vol.13 (1), p.14907-14907, Article 14907 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3a6d32daebaf4a6c91b60abe62aa93bd |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/67/1612 631/67/580 692/308/153 692/308/2778 Agonists CD38 antigen CD4 antigen CD8 antigen Cell differentiation Combined treatment Humanities and Social Sciences Immune checkpoint inhibitors Immunodeficiency Interleukin 13 Interleukin 5 Lung cancer Lymphocytes Lymphocytes T multidisciplinary PD-L1 protein Pharmacokinetics Retinoic acid Retinoic acid receptors Science Science (multidisciplinary) Statistical analysis Stroma Tumor microenvironment Tumorigenicity Tumors |
title | A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20retinoic%20acid%20receptor-%CE%B3%20agonist%20antagonizes%20immune%20checkpoint%20resistance%20in%20lung%20cancers%20by%20altering%20the%20tumor%20immune%20microenvironment&rft.jtitle=Scientific%20reports&rft.au=Wei,%20Cheng-Hsin&rft.date=2023-09-09&rft.volume=13&rft.issue=1&rft.spage=14907&rft.epage=14907&rft.pages=14907-14907&rft.artnum=14907&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-41690-5&rft_dat=%3Cproquest_doaj_%3E2863292994%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-9e7400b47f89b78e8ba17c33436cabaa756724c53b923718ad3938d50f9a29d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862854236&rft_id=info:pmid/37689790&rfr_iscdi=true |