Loading…

Synergy of High-Resolution Radar and Optical Images Satellite for Identification and Mapping of Wetland Macrophytes on the Danube Delta

In wetland environments, vegetation has an important role in ecological functioning. The main goal of this work was to identify an optimal combination of Sentinel-1 (S1), Sentinel-2 (S2), and Pleiades data using ground-reference data to accurately map wetland macrophytes in the Danube Delta. We test...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-07, Vol.12 (14), p.2188
Main Authors: Niculescu, Simona, Boissonnat, Jean-Baptiste, Lardeux, Cédric, Roberts, Dar, Hanganu, Jenica, Billey, Antoine, Constantinescu, Adrian, Doroftei, Mihai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In wetland environments, vegetation has an important role in ecological functioning. The main goal of this work was to identify an optimal combination of Sentinel-1 (S1), Sentinel-2 (S2), and Pleiades data using ground-reference data to accurately map wetland macrophytes in the Danube Delta. We tested several combinations of optical and Synthetic Aperture Radar (SAR) data rigorously at two levels. First, in order to reduce the confusion between reed (Phragmites australis (Cav.) Trin. ex Steud.) and other macrophyte communities, a time series analysis of S1 data was performed. The potential of S1 for detection of compact reed on plaur, compact reed on plaur/reed cut, open reed on plaur, pure reed, and reed on salinized soil was evaluated through time series of backscatter coefficient and coherence ratio images, calculated mainly according to the phenology of the reed. The analysis of backscattering coefficients allowed separation of reed classes that strongly overlapped. The coherence coefficient showed that C-band SAR repeat pass interferometric coherence for cut reed detection is feasible. In the second section, random forest (RF) classification was applied to the S2, Pleiades, and S1 data and in situ observations to discriminate and map reed against other aquatic macrophytes (submerged aquatic vegetation (SAV), emergent macrophytes, some floating broad-leaved and floating vegetation of delta lakes). In addition, different optical indices were included in the RF. A total of 67 classification models were made in several sensor combinations with two series of validation samples (with the reed and without reed) using both a simple and more detailed classification schema. The results showed that reed is completely discriminable compared to other macrophyte communities with all sensor combinations. In all combinations, the model-based producer’s accuracy (PA) and user’s accuracy (UA) for reed with both nomenclatures were over 90%. The diverse combinations of sensors were valuable for improving the overall classification accuracy of all of the communities of aquatic macrophytes except Myriophyllum spicatum L.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12142188