Loading…

Upper semicontinuity of uniform attractors for nonclassical diffusion equations

We study the upper semicontinuity of a uniform attractor for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, we prove that the uniform (with respect to (w.r.t.) g ∈ Σ ) attractor A Σ ε ( ε ⩾ 0 ) for equation ( 1.1 ) satisfies lim ε → ε 0 dist H 0 1 ( Ω ) (...

Full description

Saved in:
Bibliographic Details
Published in:Boundary value problems 2017-06, Vol.2017 (1), p.1-11, Article 84
Main Authors: Wang, Yonghai, Li, Pengrui, Qin, Yuming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03
cites cdi_FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03
container_end_page 11
container_issue 1
container_start_page 1
container_title Boundary value problems
container_volume 2017
creator Wang, Yonghai
Li, Pengrui
Qin, Yuming
description We study the upper semicontinuity of a uniform attractor for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, we prove that the uniform (with respect to (w.r.t.) g ∈ Σ ) attractor A Σ ε ( ε ⩾ 0 ) for equation ( 1.1 ) satisfies lim ε → ε 0 dist H 0 1 ( Ω ) ( A Σ ε , A Σ ε 0 ) = 0 for any ε 0 ⩾ 0 .
doi_str_mv 10.1186/s13661-017-0816-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a75bcb5f8ae4951b1a87a4a539f3a4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a75bcb5f8ae4951b1a87a4a539f3a4f</doaj_id><sourcerecordid>1906358778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03</originalsourceid><addsrcrecordid>eNp1UclqwzAQNaWFrh_Qm6Fnt5JlaeRjKd2gkEtzFmMtQSGxEkk-5O-r1KX00tO8Gd4y8KrqlpJ7SqV4SJQJQRtCoSGSigZOqgsqJDQtADn9g8-ry5TWhLCede1FtVjudjbWyW69DmP24-TzoQ6unkbvQtzWmHNEnUNMddnrMYx6gyl5jZvaeOem5MNY2_2EuYB0XZ053CR78zOvquXL8-fTW_OxeH1_evxodNfy3BjDraZi0AMQwnULdCAIAMIIwrREQaWxSPpWAyfMWGMArRgcCs1QO8KuqvfZ1wRcq130W4wHFdCr70OIK4Uxe72xiiHwEsSdRNv1nA4UJWCHnPWOYeeK193stYthP9mU1TpMcSzvK9oTwbgEkIVFZ5aOIaVo3W8qJerYgZo7UKUDdexAQdG0syYV7riy8Y_zv6IvE-KLxA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906358778</pqid></control><display><type>article</type><title>Upper semicontinuity of uniform attractors for nonclassical diffusion equations</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wang, Yonghai ; Li, Pengrui ; Qin, Yuming</creator><creatorcontrib>Wang, Yonghai ; Li, Pengrui ; Qin, Yuming</creatorcontrib><description>We study the upper semicontinuity of a uniform attractor for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, we prove that the uniform (with respect to (w.r.t.) g ∈ Σ ) attractor A Σ ε ( ε ⩾ 0 ) for equation ( 1.1 ) satisfies lim ε → ε 0 dist H 0 1 ( Ω ) ( A Σ ε , A Σ ε 0 ) = 0 for any ε 0 ⩾ 0 .</description><identifier>ISSN: 1687-2770</identifier><identifier>ISSN: 1687-2762</identifier><identifier>EISSN: 1687-2770</identifier><identifier>DOI: 10.1186/s13661-017-0816-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Approximations and Expansions ; Difference and Functional Equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; nonautonomous ; nonclassical diffusion equation ; Nonlinearity ; Ordinary Differential Equations ; Partial Differential Equations ; uniform attractor ; upper semicontinuity</subject><ispartof>Boundary value problems, 2017-06, Vol.2017 (1), p.1-11, Article 84</ispartof><rights>The Author(s) 2017</rights><rights>Boundary Value Problems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03</citedby><cites>FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1906358778/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1906358778?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Wang, Yonghai</creatorcontrib><creatorcontrib>Li, Pengrui</creatorcontrib><creatorcontrib>Qin, Yuming</creatorcontrib><title>Upper semicontinuity of uniform attractors for nonclassical diffusion equations</title><title>Boundary value problems</title><addtitle>Bound Value Probl</addtitle><description>We study the upper semicontinuity of a uniform attractor for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, we prove that the uniform (with respect to (w.r.t.) g ∈ Σ ) attractor A Σ ε ( ε ⩾ 0 ) for equation ( 1.1 ) satisfies lim ε → ε 0 dist H 0 1 ( Ω ) ( A Σ ε , A Σ ε 0 ) = 0 for any ε 0 ⩾ 0 .</description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Difference and Functional Equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>nonautonomous</subject><subject>nonclassical diffusion equation</subject><subject>Nonlinearity</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>uniform attractor</subject><subject>upper semicontinuity</subject><issn>1687-2770</issn><issn>1687-2762</issn><issn>1687-2770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UclqwzAQNaWFrh_Qm6Fnt5JlaeRjKd2gkEtzFmMtQSGxEkk-5O-r1KX00tO8Gd4y8KrqlpJ7SqV4SJQJQRtCoSGSigZOqgsqJDQtADn9g8-ry5TWhLCede1FtVjudjbWyW69DmP24-TzoQ6unkbvQtzWmHNEnUNMddnrMYx6gyl5jZvaeOem5MNY2_2EuYB0XZ053CR78zOvquXL8-fTW_OxeH1_evxodNfy3BjDraZi0AMQwnULdCAIAMIIwrREQaWxSPpWAyfMWGMArRgcCs1QO8KuqvfZ1wRcq130W4wHFdCr70OIK4Uxe72xiiHwEsSdRNv1nA4UJWCHnPWOYeeK193stYthP9mU1TpMcSzvK9oTwbgEkIVFZ5aOIaVo3W8qJerYgZo7UKUDdexAQdG0syYV7riy8Y_zv6IvE-KLxA</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Wang, Yonghai</creator><creator>Li, Pengrui</creator><creator>Qin, Yuming</creator><general>Springer International Publishing</general><general>Hindawi Limited</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170606</creationdate><title>Upper semicontinuity of uniform attractors for nonclassical diffusion equations</title><author>Wang, Yonghai ; Li, Pengrui ; Qin, Yuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Difference and Functional Equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>nonautonomous</topic><topic>nonclassical diffusion equation</topic><topic>Nonlinearity</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>uniform attractor</topic><topic>upper semicontinuity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yonghai</creatorcontrib><creatorcontrib>Li, Pengrui</creatorcontrib><creatorcontrib>Qin, Yuming</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Boundary value problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yonghai</au><au>Li, Pengrui</au><au>Qin, Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper semicontinuity of uniform attractors for nonclassical diffusion equations</atitle><jtitle>Boundary value problems</jtitle><stitle>Bound Value Probl</stitle><date>2017-06-06</date><risdate>2017</risdate><volume>2017</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>84</artnum><issn>1687-2770</issn><issn>1687-2762</issn><eissn>1687-2770</eissn><abstract>We study the upper semicontinuity of a uniform attractor for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, we prove that the uniform (with respect to (w.r.t.) g ∈ Σ ) attractor A Σ ε ( ε ⩾ 0 ) for equation ( 1.1 ) satisfies lim ε → ε 0 dist H 0 1 ( Ω ) ( A Σ ε , A Σ ε 0 ) = 0 for any ε 0 ⩾ 0 .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13661-017-0816-7</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-2770
ispartof Boundary value problems, 2017-06, Vol.2017 (1), p.1-11, Article 84
issn 1687-2770
1687-2762
1687-2770
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3a75bcb5f8ae4951b1a87a4a539f3a4f
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Approximations and Expansions
Difference and Functional Equations
Mathematical analysis
Mathematics
Mathematics and Statistics
nonautonomous
nonclassical diffusion equation
Nonlinearity
Ordinary Differential Equations
Partial Differential Equations
uniform attractor
upper semicontinuity
title Upper semicontinuity of uniform attractors for nonclassical diffusion equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20semicontinuity%20of%20uniform%20attractors%20for%20nonclassical%20diffusion%20equations&rft.jtitle=Boundary%20value%20problems&rft.au=Wang,%20Yonghai&rft.date=2017-06-06&rft.volume=2017&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=84&rft.issn=1687-2770&rft.eissn=1687-2770&rft_id=info:doi/10.1186/s13661-017-0816-7&rft_dat=%3Cproquest_doaj_%3E1906358778%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-dd5ec16bcb7005c271b0a7776d603c8a618dea092c7503dedd7ae6bfa6c3acf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906358778&rft_id=info:pmid/&rfr_iscdi=true