Loading…
Kinect-based rapid movement training to improve balance recovery for stroke fall prevention: a randomized controlled trial
Background Falls are more prevalent in stroke survivors than age-matched healthy older adults because of their functional impairment. Rapid balance recovery reaction with adequate range-of-motion and fast response and movement time are crucial to minimize fall risk and prevent serious injurious fall...
Saved in:
Published in: | Journal of neuroengineering and rehabilitation 2021-10, Vol.18 (1), p.1-150, Article 150 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Falls are more prevalent in stroke survivors than age-matched healthy older adults because of their functional impairment. Rapid balance recovery reaction with adequate range-of-motion and fast response and movement time are crucial to minimize fall risk and prevent serious injurious falls when postural disturbances occur. A Kinect-based Rapid Movement Training (RMT) program was developed to provide real-time feedback to promote faster and larger arm reaching and leg stepping distances toward targets in 22 different directions. Objective To evaluate the effectiveness of the interactive RMT and Conventional Balance Training (CBT) on chronic stroke survivors' overall balance and balance recovery reaction. Methods In this assessor-blinded randomized controlled trial, chronic stroke survivors were randomized to receive twenty training sessions (60-min each) of either RMT or CBT. Pre- and post-training assessments included clinical tests, as well as kinematic measurements and electromyography during simulated forward fall through a "lean-and-release" perturbation system. Results Thirty participants were recruited (RMT = 16, CBT = 14). RMT led to significant improvement in balance control (Berg Balance Scale: pre = 49.13, post = 52.75; P = .001), gait control (Timed-Up-and-Go Test: pre = 14.66 s, post = 12.62 s; P = .011), and motor functions (Fugl-Meyer Assessment of Motor Recovery: pre = 60.63, post = 65.19; P = .015), which matched the effectiveness of CBT. Both groups preferred to use their non-paretic leg to take the initial step to restore stability, and their stepping leg's rectus femoris reacted significantly faster post-training (P = .036). Conclusion The RMT was as effective as conventional balance training to provide beneficial effects on chronic stroke survivors' overall balance, motor function and improving balance recovery with faster muscle response. Trial registration: The study was registered at Clinicaltrials.gov ( Keywords: Falls, Stroke rehabilitation, Slip and fall, Balance, Posture, Telerehabilitation |
---|---|
ISSN: | 1743-0003 1743-0003 |
DOI: | 10.1186/s12984-021-00922-3 |