Loading…

Adaptive IMM-UKF for Airborne Tracking

In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and mor...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace 2023-08, Vol.10 (8), p.698
Main Authors: Arroyo Cebeira, Alvaro, Asensio Vicente, Mariano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93
cites cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93
container_end_page
container_issue 8
container_start_page 698
container_title Aerospace
container_volume 10
creator Arroyo Cebeira, Alvaro
Asensio Vicente, Mariano
description In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.
doi_str_mv 10.3390/aerospace10080698
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762462383</galeid><doaj_id>oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de</doaj_id><sourcerecordid>A762462383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</originalsourceid><addsrcrecordid>eNplkU1LAzEQhhdRUNQf4K0geFtNMtndybEUq0XFS3sO02S2pNZNzW4F_73RigjOHGYY3nmYj6K4kOIawIgb4hT7LTmWQqCoDR4UJ0qputQgxeGf_Lg47_u1yGYkoKhOiquxp-0Q3nk0e3oqFw_TURvTaBzSMqaOR_NE7iV0q7PiqKVNz-c_8bRYTG_nk_vy8fluNhk_lk4rOZSyrXVmE1aADVZuCU620hkNaJxbMpGkRuoallnpgUGBZNFQQ96gYAOnxWzP9ZHWdpvCK6UPGynY70JMK0tpCG7DFsg4rrHy7FE7740gpytXoZFaoefMutyztim-7bgf7DruUpfHtwqrutEIiFl1vVetKEND18Yh75zd82twseM25Pq4qZWuFSDkBrlvcPnofeL2d0wp7Nc77L93wCeZsnwd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856748388</pqid></control><display><type>article</type><title>Adaptive IMM-UKF for Airborne Tracking</title><source>Publicly Available Content (ProQuest)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</creator><creatorcontrib>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</creatorcontrib><description>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace10080698</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial targets ; Aircraft ; Algorithms ; Collision avoidance ; Consistency ; Deep learning ; Estimation errors ; interacting multiple model ; Kalman filters ; maneuvering target ; Maneuvers ; Monte Carlo method ; Monte Carlo simulation ; Neural networks ; Noise ; Noise control ; Noise reduction ; Random variables ; Surveillance ; System theory ; Tracking ; trajectory estimation ; Transition probabilities ; Velocity</subject><ispartof>Aerospace, 2023-08, Vol.10 (8), p.698</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</citedby><cites>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</cites><orcidid>0000-0002-6179-417X ; 0000-0001-8847-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856748388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856748388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Arroyo Cebeira, Alvaro</creatorcontrib><creatorcontrib>Asensio Vicente, Mariano</creatorcontrib><title>Adaptive IMM-UKF for Airborne Tracking</title><title>Aerospace</title><description>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</description><subject>Aerial targets</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Consistency</subject><subject>Deep learning</subject><subject>Estimation errors</subject><subject>interacting multiple model</subject><subject>Kalman filters</subject><subject>maneuvering target</subject><subject>Maneuvers</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Random variables</subject><subject>Surveillance</subject><subject>System theory</subject><subject>Tracking</subject><subject>trajectory estimation</subject><subject>Transition probabilities</subject><subject>Velocity</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1LAzEQhhdRUNQf4K0geFtNMtndybEUq0XFS3sO02S2pNZNzW4F_73RigjOHGYY3nmYj6K4kOIawIgb4hT7LTmWQqCoDR4UJ0qputQgxeGf_Lg47_u1yGYkoKhOiquxp-0Q3nk0e3oqFw_TURvTaBzSMqaOR_NE7iV0q7PiqKVNz-c_8bRYTG_nk_vy8fluNhk_lk4rOZSyrXVmE1aADVZuCU620hkNaJxbMpGkRuoallnpgUGBZNFQQ96gYAOnxWzP9ZHWdpvCK6UPGynY70JMK0tpCG7DFsg4rrHy7FE7740gpytXoZFaoefMutyztim-7bgf7DruUpfHtwqrutEIiFl1vVetKEND18Yh75zd82twseM25Pq4qZWuFSDkBrlvcPnofeL2d0wp7Nc77L93wCeZsnwd</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Arroyo Cebeira, Alvaro</creator><creator>Asensio Vicente, Mariano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6179-417X</orcidid><orcidid>https://orcid.org/0000-0001-8847-710X</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive IMM-UKF for Airborne Tracking</title><author>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial targets</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Consistency</topic><topic>Deep learning</topic><topic>Estimation errors</topic><topic>interacting multiple model</topic><topic>Kalman filters</topic><topic>maneuvering target</topic><topic>Maneuvers</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Random variables</topic><topic>Surveillance</topic><topic>System theory</topic><topic>Tracking</topic><topic>trajectory estimation</topic><topic>Transition probabilities</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo Cebeira, Alvaro</creatorcontrib><creatorcontrib>Asensio Vicente, Mariano</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo Cebeira, Alvaro</au><au>Asensio Vicente, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive IMM-UKF for Airborne Tracking</atitle><jtitle>Aerospace</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>10</volume><issue>8</issue><spage>698</spage><pages>698-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace10080698</doi><orcidid>https://orcid.org/0000-0002-6179-417X</orcidid><orcidid>https://orcid.org/0000-0001-8847-710X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4310
ispartof Aerospace, 2023-08, Vol.10 (8), p.698
issn 2226-4310
2226-4310
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de
source Publicly Available Content (ProQuest); Free E-Journal (出版社公開部分のみ)
subjects Aerial targets
Aircraft
Algorithms
Collision avoidance
Consistency
Deep learning
Estimation errors
interacting multiple model
Kalman filters
maneuvering target
Maneuvers
Monte Carlo method
Monte Carlo simulation
Neural networks
Noise
Noise control
Noise reduction
Random variables
Surveillance
System theory
Tracking
trajectory estimation
Transition probabilities
Velocity
title Adaptive IMM-UKF for Airborne Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20IMM-UKF%20for%20Airborne%20Tracking&rft.jtitle=Aerospace&rft.au=Arroyo%20Cebeira,%20Alvaro&rft.date=2023-08-01&rft.volume=10&rft.issue=8&rft.spage=698&rft.pages=698-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace10080698&rft_dat=%3Cgale_doaj_%3EA762462383%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856748388&rft_id=info:pmid/&rft_galeid=A762462383&rfr_iscdi=true