Loading…
Adaptive IMM-UKF for Airborne Tracking
In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and mor...
Saved in:
Published in: | Aerospace 2023-08, Vol.10 (8), p.698 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93 |
container_end_page | |
container_issue | 8 |
container_start_page | 698 |
container_title | Aerospace |
container_volume | 10 |
creator | Arroyo Cebeira, Alvaro Asensio Vicente, Mariano |
description | In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error. |
doi_str_mv | 10.3390/aerospace10080698 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762462383</galeid><doaj_id>oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de</doaj_id><sourcerecordid>A762462383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</originalsourceid><addsrcrecordid>eNplkU1LAzEQhhdRUNQf4K0geFtNMtndybEUq0XFS3sO02S2pNZNzW4F_73RigjOHGYY3nmYj6K4kOIawIgb4hT7LTmWQqCoDR4UJ0qputQgxeGf_Lg47_u1yGYkoKhOiquxp-0Q3nk0e3oqFw_TURvTaBzSMqaOR_NE7iV0q7PiqKVNz-c_8bRYTG_nk_vy8fluNhk_lk4rOZSyrXVmE1aADVZuCU620hkNaJxbMpGkRuoallnpgUGBZNFQQ96gYAOnxWzP9ZHWdpvCK6UPGynY70JMK0tpCG7DFsg4rrHy7FE7740gpytXoZFaoefMutyztim-7bgf7DruUpfHtwqrutEIiFl1vVetKEND18Yh75zd82twseM25Pq4qZWuFSDkBrlvcPnofeL2d0wp7Nc77L93wCeZsnwd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856748388</pqid></control><display><type>article</type><title>Adaptive IMM-UKF for Airborne Tracking</title><source>Publicly Available Content (ProQuest)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</creator><creatorcontrib>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</creatorcontrib><description>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace10080698</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial targets ; Aircraft ; Algorithms ; Collision avoidance ; Consistency ; Deep learning ; Estimation errors ; interacting multiple model ; Kalman filters ; maneuvering target ; Maneuvers ; Monte Carlo method ; Monte Carlo simulation ; Neural networks ; Noise ; Noise control ; Noise reduction ; Random variables ; Surveillance ; System theory ; Tracking ; trajectory estimation ; Transition probabilities ; Velocity</subject><ispartof>Aerospace, 2023-08, Vol.10 (8), p.698</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</citedby><cites>FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</cites><orcidid>0000-0002-6179-417X ; 0000-0001-8847-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856748388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856748388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Arroyo Cebeira, Alvaro</creatorcontrib><creatorcontrib>Asensio Vicente, Mariano</creatorcontrib><title>Adaptive IMM-UKF for Airborne Tracking</title><title>Aerospace</title><description>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</description><subject>Aerial targets</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Consistency</subject><subject>Deep learning</subject><subject>Estimation errors</subject><subject>interacting multiple model</subject><subject>Kalman filters</subject><subject>maneuvering target</subject><subject>Maneuvers</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Random variables</subject><subject>Surveillance</subject><subject>System theory</subject><subject>Tracking</subject><subject>trajectory estimation</subject><subject>Transition probabilities</subject><subject>Velocity</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1LAzEQhhdRUNQf4K0geFtNMtndybEUq0XFS3sO02S2pNZNzW4F_73RigjOHGYY3nmYj6K4kOIawIgb4hT7LTmWQqCoDR4UJ0qputQgxeGf_Lg47_u1yGYkoKhOiquxp-0Q3nk0e3oqFw_TURvTaBzSMqaOR_NE7iV0q7PiqKVNz-c_8bRYTG_nk_vy8fluNhk_lk4rOZSyrXVmE1aADVZuCU620hkNaJxbMpGkRuoallnpgUGBZNFQQ96gYAOnxWzP9ZHWdpvCK6UPGynY70JMK0tpCG7DFsg4rrHy7FE7740gpytXoZFaoefMutyztim-7bgf7DruUpfHtwqrutEIiFl1vVetKEND18Yh75zd82twseM25Pq4qZWuFSDkBrlvcPnofeL2d0wp7Nc77L93wCeZsnwd</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Arroyo Cebeira, Alvaro</creator><creator>Asensio Vicente, Mariano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6179-417X</orcidid><orcidid>https://orcid.org/0000-0001-8847-710X</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive IMM-UKF for Airborne Tracking</title><author>Arroyo Cebeira, Alvaro ; Asensio Vicente, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial targets</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Consistency</topic><topic>Deep learning</topic><topic>Estimation errors</topic><topic>interacting multiple model</topic><topic>Kalman filters</topic><topic>maneuvering target</topic><topic>Maneuvers</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Random variables</topic><topic>Surveillance</topic><topic>System theory</topic><topic>Tracking</topic><topic>trajectory estimation</topic><topic>Transition probabilities</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo Cebeira, Alvaro</creatorcontrib><creatorcontrib>Asensio Vicente, Mariano</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo Cebeira, Alvaro</au><au>Asensio Vicente, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive IMM-UKF for Airborne Tracking</atitle><jtitle>Aerospace</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>10</volume><issue>8</issue><spage>698</spage><pages>698-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace10080698</doi><orcidid>https://orcid.org/0000-0002-6179-417X</orcidid><orcidid>https://orcid.org/0000-0001-8847-710X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2226-4310 |
ispartof | Aerospace, 2023-08, Vol.10 (8), p.698 |
issn | 2226-4310 2226-4310 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3a9ce685ded84cdd90ac45c5891428de |
source | Publicly Available Content (ProQuest); Free E-Journal (出版社公開部分のみ) |
subjects | Aerial targets Aircraft Algorithms Collision avoidance Consistency Deep learning Estimation errors interacting multiple model Kalman filters maneuvering target Maneuvers Monte Carlo method Monte Carlo simulation Neural networks Noise Noise control Noise reduction Random variables Surveillance System theory Tracking trajectory estimation Transition probabilities Velocity |
title | Adaptive IMM-UKF for Airborne Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20IMM-UKF%20for%20Airborne%20Tracking&rft.jtitle=Aerospace&rft.au=Arroyo%20Cebeira,%20Alvaro&rft.date=2023-08-01&rft.volume=10&rft.issue=8&rft.spage=698&rft.pages=698-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace10080698&rft_dat=%3Cgale_doaj_%3EA762462383%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-1f64009a8538785cb3c1f1c94389ccbeaa1a71463b1f6d3e3231e07a7ad980e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856748388&rft_id=info:pmid/&rft_galeid=A762462383&rfr_iscdi=true |