Loading…

Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress

Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analy...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (12), p.2649
Main Authors: Sun, Dawei, Zhu, Yueming, Xu, Haixia, He, Yong, Cen, Haiyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03
cites cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03
container_end_page
container_issue 12
container_start_page 2649
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Sun, Dawei
Zhu, Yueming
Xu, Haixia
He, Yong
Cen, Haiyan
description Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of mutants and Col-0 to drought stress over time. Parameters including , and , etc. were significantly different between mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.
doi_str_mv 10.3390/s19122649
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927</doaj_id><sourcerecordid>2243501275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBXvi5IaMvCSkUgWs7WOB5vskrire1Uyr_Hy5ZVy8me8aNHr8aTZa8Z_SBEQz8G1jDOS9k8yc6Z5DKvOadPH9zPshch7CjlQoj6eXYmGGe8kvI8W276EfNr9D0GsuoG592-W4aBrIfZeQwtTi2SzQjbftqSX3iHMARyuUww9i352bnowjLFDmMq14lBv_f9FANxlgQXyPc5wqGMjlx6N2-7SK5jEoeX2TObXPjq_rzIfq-_3Ky-5Vc_vm5Wn6_yVpZNzHXBDLcIUBkEA21lta1bIW1pmNZGC2Ot0LwxXNQtVNxWUNSyQLBtmzpUXGSbo9c42KkUbgS_KAe9-ttwfqvAp_QDKgGaFqailgmQurRNjRpQm6KuJW14lVyfjq79rEc0aTjRw_BI-vhl6ju1dXeqLAWT9CB4dy_w7nbGENXYpxkPA0zo5qA4l6Kg6W-KhL79D9252U9pVIoLyipRNCVL1Psj1XoXgkd7CsOoOiyHOi1HYt88TH8i_22D-AMiZbit</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301735961</pqid></control><display><type>article</type><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</creator><creatorcontrib>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</creatorcontrib><description>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of mutants and Col-0 to drought stress over time. Parameters including , and , etc. were significantly different between mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19122649</identifier><identifier>PMID: 31212744</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abiotic stress ; Agricultural production ; Arabidopsis thaliana ; Automation ; Biological activity ; Chlorophyll ; chlorophyll fluorescence imaging ; Discriminant analysis ; Drought ; drought stress ; Fingerprints ; Fluorescence ; Function analysis ; Genes ; Genomes ; Genomics ; Homeostasis ; Kinases ; Laboratories ; Oxidative stress ; Photosynthesis ; Physiology ; Proteins ; Salt ; salt overly sensitive (SOS) pathway ; Signal transduction ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2649</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</citedby><cites>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</cites><orcidid>0000-0001-6752-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301735961/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301735961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31212744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Cen, Haiyan</creatorcontrib><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of mutants and Col-0 to drought stress over time. Parameters including , and , etc. were significantly different between mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</description><subject>Abiotic stress</subject><subject>Agricultural production</subject><subject>Arabidopsis thaliana</subject><subject>Automation</subject><subject>Biological activity</subject><subject>Chlorophyll</subject><subject>chlorophyll fluorescence imaging</subject><subject>Discriminant analysis</subject><subject>Drought</subject><subject>drought stress</subject><subject>Fingerprints</subject><subject>Fluorescence</subject><subject>Function analysis</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Oxidative stress</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Salt</subject><subject>salt overly sensitive (SOS) pathway</subject><subject>Signal transduction</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBXvi5IaMvCSkUgWs7WOB5vskrire1Uyr_Hy5ZVy8me8aNHr8aTZa8Z_SBEQz8G1jDOS9k8yc6Z5DKvOadPH9zPshch7CjlQoj6eXYmGGe8kvI8W276EfNr9D0GsuoG592-W4aBrIfZeQwtTi2SzQjbftqSX3iHMARyuUww9i352bnowjLFDmMq14lBv_f9FANxlgQXyPc5wqGMjlx6N2-7SK5jEoeX2TObXPjq_rzIfq-_3Ky-5Vc_vm5Wn6_yVpZNzHXBDLcIUBkEA21lta1bIW1pmNZGC2Ot0LwxXNQtVNxWUNSyQLBtmzpUXGSbo9c42KkUbgS_KAe9-ttwfqvAp_QDKgGaFqailgmQurRNjRpQm6KuJW14lVyfjq79rEc0aTjRw_BI-vhl6ju1dXeqLAWT9CB4dy_w7nbGENXYpxkPA0zo5qA4l6Kg6W-KhL79D9252U9pVIoLyipRNCVL1Psj1XoXgkd7CsOoOiyHOi1HYt88TH8i_22D-AMiZbit</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Sun, Dawei</creator><creator>Zhu, Yueming</creator><creator>Xu, Haixia</creator><creator>He, Yong</creator><creator>Cen, Haiyan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6752-1757</orcidid></search><sort><creationdate>20190612</creationdate><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><author>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abiotic stress</topic><topic>Agricultural production</topic><topic>Arabidopsis thaliana</topic><topic>Automation</topic><topic>Biological activity</topic><topic>Chlorophyll</topic><topic>chlorophyll fluorescence imaging</topic><topic>Discriminant analysis</topic><topic>Drought</topic><topic>drought stress</topic><topic>Fingerprints</topic><topic>Fluorescence</topic><topic>Function analysis</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Oxidative stress</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Salt</topic><topic>salt overly sensitive (SOS) pathway</topic><topic>Signal transduction</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Cen, Haiyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Dawei</au><au>Zhu, Yueming</au><au>Xu, Haixia</au><au>He, Yong</au><au>Cen, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>2649</spage><pages>2649-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of mutants and Col-0 to drought stress over time. Parameters including , and , etc. were significantly different between mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31212744</pmid><doi>10.3390/s19122649</doi><orcidid>https://orcid.org/0000-0001-6752-1757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2649
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927
source Publicly Available Content (ProQuest); PubMed Central
subjects Abiotic stress
Agricultural production
Arabidopsis thaliana
Automation
Biological activity
Chlorophyll
chlorophyll fluorescence imaging
Discriminant analysis
Drought
drought stress
Fingerprints
Fluorescence
Function analysis
Genes
Genomes
Genomics
Homeostasis
Kinases
Laboratories
Oxidative stress
Photosynthesis
Physiology
Proteins
Salt
salt overly sensitive (SOS) pathway
Signal transduction
Support vector machines
title Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Series%20Chlorophyll%20Fluorescence%20Imaging%20Reveals%20Dynamic%20Photosynthetic%20Fingerprints%20of%20sos%20Mutants%20to%20Drought%20Stress&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Dawei&rft.date=2019-06-12&rft.volume=19&rft.issue=12&rft.spage=2649&rft.pages=2649-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19122649&rft_dat=%3Cproquest_doaj_%3E2243501275%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301735961&rft_id=info:pmid/31212744&rfr_iscdi=true