Loading…
Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress
Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analy...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (12), p.2649 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03 |
container_end_page | |
container_issue | 12 |
container_start_page | 2649 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Sun, Dawei Zhu, Yueming Xu, Haixia He, Yong Cen, Haiyan |
description | Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including
mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of
mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of
mutants and Col-0 to drought stress over time. Parameters including
,
and
, etc. were significantly different between
mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner. |
doi_str_mv | 10.3390/s19122649 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927</doaj_id><sourcerecordid>2243501275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBXvi5IaMvCSkUgWs7WOB5vskrire1Uyr_Hy5ZVy8me8aNHr8aTZa8Z_SBEQz8G1jDOS9k8yc6Z5DKvOadPH9zPshch7CjlQoj6eXYmGGe8kvI8W276EfNr9D0GsuoG592-W4aBrIfZeQwtTi2SzQjbftqSX3iHMARyuUww9i352bnowjLFDmMq14lBv_f9FANxlgQXyPc5wqGMjlx6N2-7SK5jEoeX2TObXPjq_rzIfq-_3Ky-5Vc_vm5Wn6_yVpZNzHXBDLcIUBkEA21lta1bIW1pmNZGC2Ot0LwxXNQtVNxWUNSyQLBtmzpUXGSbo9c42KkUbgS_KAe9-ttwfqvAp_QDKgGaFqailgmQurRNjRpQm6KuJW14lVyfjq79rEc0aTjRw_BI-vhl6ju1dXeqLAWT9CB4dy_w7nbGENXYpxkPA0zo5qA4l6Kg6W-KhL79D9252U9pVIoLyipRNCVL1Psj1XoXgkd7CsOoOiyHOi1HYt88TH8i_22D-AMiZbit</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301735961</pqid></control><display><type>article</type><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</creator><creatorcontrib>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</creatorcontrib><description>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including
mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of
mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of
mutants and Col-0 to drought stress over time. Parameters including
,
and
, etc. were significantly different between
mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19122649</identifier><identifier>PMID: 31212744</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abiotic stress ; Agricultural production ; Arabidopsis thaliana ; Automation ; Biological activity ; Chlorophyll ; chlorophyll fluorescence imaging ; Discriminant analysis ; Drought ; drought stress ; Fingerprints ; Fluorescence ; Function analysis ; Genes ; Genomes ; Genomics ; Homeostasis ; Kinases ; Laboratories ; Oxidative stress ; Photosynthesis ; Physiology ; Proteins ; Salt ; salt overly sensitive (SOS) pathway ; Signal transduction ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2649</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</citedby><cites>FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</cites><orcidid>0000-0001-6752-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301735961/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301735961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31212744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Cen, Haiyan</creatorcontrib><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including
mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of
mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of
mutants and Col-0 to drought stress over time. Parameters including
,
and
, etc. were significantly different between
mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</description><subject>Abiotic stress</subject><subject>Agricultural production</subject><subject>Arabidopsis thaliana</subject><subject>Automation</subject><subject>Biological activity</subject><subject>Chlorophyll</subject><subject>chlorophyll fluorescence imaging</subject><subject>Discriminant analysis</subject><subject>Drought</subject><subject>drought stress</subject><subject>Fingerprints</subject><subject>Fluorescence</subject><subject>Function analysis</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Oxidative stress</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Salt</subject><subject>salt overly sensitive (SOS) pathway</subject><subject>Signal transduction</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBXvi5IaMvCSkUgWs7WOB5vskrire1Uyr_Hy5ZVy8me8aNHr8aTZa8Z_SBEQz8G1jDOS9k8yc6Z5DKvOadPH9zPshch7CjlQoj6eXYmGGe8kvI8W276EfNr9D0GsuoG592-W4aBrIfZeQwtTi2SzQjbftqSX3iHMARyuUww9i352bnowjLFDmMq14lBv_f9FANxlgQXyPc5wqGMjlx6N2-7SK5jEoeX2TObXPjq_rzIfq-_3Ky-5Vc_vm5Wn6_yVpZNzHXBDLcIUBkEA21lta1bIW1pmNZGC2Ot0LwxXNQtVNxWUNSyQLBtmzpUXGSbo9c42KkUbgS_KAe9-ttwfqvAp_QDKgGaFqailgmQurRNjRpQm6KuJW14lVyfjq79rEc0aTjRw_BI-vhl6ju1dXeqLAWT9CB4dy_w7nbGENXYpxkPA0zo5qA4l6Kg6W-KhL79D9252U9pVIoLyipRNCVL1Psj1XoXgkd7CsOoOiyHOi1HYt88TH8i_22D-AMiZbit</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Sun, Dawei</creator><creator>Zhu, Yueming</creator><creator>Xu, Haixia</creator><creator>He, Yong</creator><creator>Cen, Haiyan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6752-1757</orcidid></search><sort><creationdate>20190612</creationdate><title>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</title><author>Sun, Dawei ; Zhu, Yueming ; Xu, Haixia ; He, Yong ; Cen, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abiotic stress</topic><topic>Agricultural production</topic><topic>Arabidopsis thaliana</topic><topic>Automation</topic><topic>Biological activity</topic><topic>Chlorophyll</topic><topic>chlorophyll fluorescence imaging</topic><topic>Discriminant analysis</topic><topic>Drought</topic><topic>drought stress</topic><topic>Fingerprints</topic><topic>Fluorescence</topic><topic>Function analysis</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Oxidative stress</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Salt</topic><topic>salt overly sensitive (SOS) pathway</topic><topic>Signal transduction</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Cen, Haiyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Dawei</au><au>Zhu, Yueming</au><au>Xu, Haixia</au><au>He, Yong</au><au>Cen, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>2649</spage><pages>2649-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including
mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of
mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of
mutants and Col-0 to drought stress over time. Parameters including
,
and
, etc. were significantly different between
mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31212744</pmid><doi>10.3390/s19122649</doi><orcidid>https://orcid.org/0000-0001-6752-1757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2649 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3ab05d70f13a4b6f98ebaebd58840927 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Abiotic stress Agricultural production Arabidopsis thaliana Automation Biological activity Chlorophyll chlorophyll fluorescence imaging Discriminant analysis Drought drought stress Fingerprints Fluorescence Function analysis Genes Genomes Genomics Homeostasis Kinases Laboratories Oxidative stress Photosynthesis Physiology Proteins Salt salt overly sensitive (SOS) pathway Signal transduction Support vector machines |
title | Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Series%20Chlorophyll%20Fluorescence%20Imaging%20Reveals%20Dynamic%20Photosynthetic%20Fingerprints%20of%20sos%20Mutants%20to%20Drought%20Stress&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Dawei&rft.date=2019-06-12&rft.volume=19&rft.issue=12&rft.spage=2649&rft.pages=2649-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19122649&rft_dat=%3Cproquest_doaj_%3E2243501275%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b51d2feaa7deadac7fbf8c34f6d1bbdb3dff3b29d238ca72f7a5845eafcc38c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301735961&rft_id=info:pmid/31212744&rfr_iscdi=true |