Loading…

Expanding wildland-urban interface alters forest structure and landscape context in the northern United States

The wildland-urban interface (WUI), where housing intermingles with wildland vegetation, is the fastest-growing land use type in the United States. Given the ecological and social benefits of forest ecosystems, there is a growing need to more fully understand how such development alters the landscap...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2023-01, Vol.18 (1), p.14010
Main Authors: Sonti, Nancy F, Riemann, Rachel, Mockrin, Miranda H, Domke, Grant M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wildland-urban interface (WUI), where housing intermingles with wildland vegetation, is the fastest-growing land use type in the United States. Given the ecological and social benefits of forest ecosystems, there is a growing need to more fully understand how such development alters the landscape context and structure of these WUI forests. In a space-for-time analysis we utilized land cover data, forest inventory plots, and housing density data over time to examine differences in forest characteristics of the northern US across three WUI change classes: (a) forest that has been in WUI housing density levels since at least 1990 (old-WUI), (b) forest where development crossed the WUI housing density threshold after 1990 (new-WUI), and (c) forest with little to no housing development (non-WUI). Of the 184 million acres of forest in the study area, 34 million acres (19%) were in old-WUI, 12 million acres (7%) were new-WUI, and 136 million acres (74%) were non-WUI. In general, as areas transitioned from non-WUI to newer WUI to older more established WUI, the forest was associated with decreased spatial integrity, increased forest-developed edges, and lower proportions of forest in the surrounding landscape. Forest in the WUI had greater carbon storage, with greater aboveground biomass, relative stand density, and more live trees per hectare than non-WUI forest, suggesting greater capacity to sequester carbon compared to non-WUI forest. At the same time, WUI forest also had significantly reduced structural diversity compared to non-WUI forest, with fewer saplings, seedlings, and dead trees per hectare. Forest that more recently crossed the WUI housing density threshold appeared to be on a trajectory towards that of old-WUI forest. These differences in forest structure across the northern US suggest reduced capacity for forest regeneration in the WUI and the potential for changes in other ecological functions.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aca77b