Loading…
Modelling and control of vanadium redox flow battery for smoothing wind power fluctuation
Due to the negative impact of a highly stochastic wind power fluctuation on the power quality and stability during high penetration of wind power in power systems, there is growing interest in power smoothing and energy redistribution in wind power systems by using large‐scale energy storage technol...
Saved in:
Published in: | IET renewable power generation 2021-11, Vol.15 (15), p.3552-3563 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the negative impact of a highly stochastic wind power fluctuation on the power quality and stability during high penetration of wind power in power systems, there is growing interest in power smoothing and energy redistribution in wind power systems by using large‐scale energy storage technologies. The aim of this work is to use a vanadium redox flow battery as an energy storage system (ESS) to smooth wind power fluctuation with two system configurations and corresponding control strategies. As the first step, a vanadium redox flow battery (VRFB) mathematical model, underlain by electrochemical theories, is built to describe the battery behaviours in charge/discharge cycles. Accordingly, the aforementioned system configuration and power fluctuation smoothing schemes are proposed. At the end of this work, simulations are conducted on a 3.6 MW doubly‐fed induction generator (DFIG) at a diversity of wind speeds for an assessment of feasibility that this work can be applied to a high penetration of wind power in practice. Simulation results reveal that power fluctuations can be improved by power smoothing. The root mean square deviation (RMSD) percentage can be reduced to less than 1%. |
---|---|
ISSN: | 1752-1416 1752-1424 |
DOI: | 10.1049/rpg2.12244 |