Loading…

Label-Free Cyanobacteria Quantification Using a Microflow Cytometry Platform for Early Warning Detection and Characterization of Hazardous Cyanobacteria Blooms

The eutrophication of aquatic ecosystems caused by rapid human urbanization has led to an increased production of potentially hazardous bacterial populations, known as blooms. One of the most notorious forms of these aquatic blooms are cyanobacteria, which in sufficiently large quantities can pose a...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2023-04, Vol.14 (5), p.965
Main Authors: Zhang, Yushan, Escobar, Andres, Guo, Tianyi, Xu, Chang-Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The eutrophication of aquatic ecosystems caused by rapid human urbanization has led to an increased production of potentially hazardous bacterial populations, known as blooms. One of the most notorious forms of these aquatic blooms are cyanobacteria, which in sufficiently large quantities can pose a hazard to human health through ingestion or prolonged exposure. Currently, one of the greatest difficulties in regulating and monitoring these potential hazards is the early detection of cyanobacterial blooms, in real time. Therefore, this paper presents an integrated microflow cytometry platform for label-free phycocyanin fluorescence detection, which can be used for the rapid quantification of low-level cyanobacteria and provide early warning alerts for potential harmful cyanobacterial blooms. An automated cyanobacterial concentration and recovery system (ACCRS) was developed and optimized to reduce the assay volume, from 1000 mL to 1 mL, to act as a pre-concentrator and subsequently enhance the detection limit. The microflow cytometry platform utilizes an on-chip laser-facilitated detection to measure the in vivo fluorescence emitted from each individual cyanobacterial cell, as opposed to measuring overall fluorescence of the whole sample, potentially decreasing the detection limit. By applying transit time and amplitude thresholds, the proposed cyanobacteria detection method was verified by the traditional cell counting technique using a hemocytometer with an R value of 0.993. It was shown that the limit of quantification of this microflow cytometry platform can be as low as 5 cells/mL for , 400-fold lower than the Alert Level 1 (2000 cells/mL) set by the World Health Organization (WHO). Furthermore, the decreased detection limit may facilitate the future characterization of cyanobacterial bloom formation to better provide authorities with ample time to take the appropriate actions to mitigate human risk from these potentially hazardous blooms.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14050965