Loading…
Implementation of a Controller to Eliminate the Limit Cycle in the Inverted Pendulum on a Cart
A frequency response-based linear controller is implemented to regulate the inverted pendulum on a cart at the inverted position. The objective is to improve the performance of the control system by eliminating the limit cycle generated by the dead-zone, induced by static friction, at the actuator o...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2019-01, Vol.2019 (2019), p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A frequency response-based linear controller is implemented to regulate the inverted pendulum on a cart at the inverted position. The objective is to improve the performance of the control system by eliminating the limit cycle generated by the dead-zone, induced by static friction, at the actuator of the mechanism. This control strategy has been recently introduced and applied by the authors to eliminate the limit cycle in the Furuta pendulum and the pendubot systems. Hence, the main aim of the present paper is to study the applicability of the control strategy to eliminate the limit cycle in the inverted pendulum on a cart. The successful results that are obtained in experiments corroborate that the approach introduced by the authors to eliminate the limit cycle in the Furuta pendulum and pendubot is also valid for the inverted pendulum on a cart. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/8271584 |