Loading…

Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models

Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurode...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-03, Vol.12 (1), p.4951-4951, Article 4951
Main Authors: Ohta, Morihiro, Asabuki, Toshitake, Fukai, Tomoki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3
cites cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3
container_end_page 4951
container_issue 1
container_start_page 4951
container_title Scientific reports
container_volume 12
creator Ohta, Morihiro
Asabuki, Toshitake
Fukai, Tomoki
description Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.
doi_str_mv 10.1038/s41598-022-08953-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347</doaj_id><sourcerecordid>2642186132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfG_JPYFCVWFrrQSl96tSTxOvSR2sZNF7RvxHLwYZlNKywFfxh7_5rM_e4riNSVnlHD5PglaK1kRxioiVc2ru2fFMSOirhhn7Pmj-VFxmtKO5FEzJah6WRzxOucl5ccFbPwcnU-uL7slpjmVFno3uhlmLEeE6J0fymDL7c8f-9vSjm64nssp7HFCn2nny4j9EmNelR6XCGMO8_cQv2bK4JheFS8sjAlP7-NJcfXp4ur8stp--bw5_7it-lqSuVLC0BrAUtF1rOemaRRYtMb0inWGZ7OsZWga2qJFbKjqOAFGW6uYbazhJ8VmlTUBdvomugnirQ7g9CER4qAhzq4fUXPAXAYcQLbCdkYCcKGIkAI45aLNWh9WrZulm9D02Vv29UT06Y5313oIey2V4LThWeDdvUAM3xZMs55c6nEcwWNYkmaNYFIRwkVG3_6D7sISfX6pA0VlQznLFFupPoaUItqHy1Cif_eDXvtB537Qh37Qd7nozWMbDyV_fj8DfAVS3vIDxr9n_0f2FyWExGY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642186132</pqid></control><display><type>article</type><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</creator><creatorcontrib>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</creatorcontrib><description>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-08953-z</identifier><identifier>PMID: 35322813</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/1925 ; 631/378/116/2393 ; 631/378/116/2396 ; Action Potentials - physiology ; Cognitive ability ; Computational neuroscience ; Firing pattern ; Flight ; Humanities and Social Sciences ; Humans ; Learning ; Mental disorders ; Models, Neurological ; Movement ; multidisciplinary ; Neural coding ; Neural networks ; Neural Networks, Computer ; Neurodegenerative diseases ; Neuronal Plasticity - physiology ; Neurons - physiology ; Saccadic eye movements ; Science ; Science (multidisciplinary) ; Synaptic plasticity</subject><ispartof>Scientific reports, 2022-03, Vol.12 (1), p.4951-4951, Article 4951</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</citedby><cites>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642186132/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642186132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35322813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohta, Morihiro</creatorcontrib><creatorcontrib>Asabuki, Toshitake</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</description><subject>631/378/116/1925</subject><subject>631/378/116/2393</subject><subject>631/378/116/2396</subject><subject>Action Potentials - physiology</subject><subject>Cognitive ability</subject><subject>Computational neuroscience</subject><subject>Firing pattern</subject><subject>Flight</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning</subject><subject>Mental disorders</subject><subject>Models, Neurological</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurodegenerative diseases</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Saccadic eye movements</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synaptic plasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfG_JPYFCVWFrrQSl96tSTxOvSR2sZNF7RvxHLwYZlNKywFfxh7_5rM_e4riNSVnlHD5PglaK1kRxioiVc2ru2fFMSOirhhn7Pmj-VFxmtKO5FEzJah6WRzxOucl5ccFbPwcnU-uL7slpjmVFno3uhlmLEeE6J0fymDL7c8f-9vSjm64nssp7HFCn2nny4j9EmNelR6XCGMO8_cQv2bK4JheFS8sjAlP7-NJcfXp4ur8stp--bw5_7it-lqSuVLC0BrAUtF1rOemaRRYtMb0inWGZ7OsZWga2qJFbKjqOAFGW6uYbazhJ8VmlTUBdvomugnirQ7g9CER4qAhzq4fUXPAXAYcQLbCdkYCcKGIkAI45aLNWh9WrZulm9D02Vv29UT06Y5313oIey2V4LThWeDdvUAM3xZMs55c6nEcwWNYkmaNYFIRwkVG3_6D7sISfX6pA0VlQznLFFupPoaUItqHy1Cif_eDXvtB537Qh37Qd7nozWMbDyV_fj8DfAVS3vIDxr9n_0f2FyWExGY</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Ohta, Morihiro</creator><creator>Asabuki, Toshitake</creator><creator>Fukai, Tomoki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220323</creationdate><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><author>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/116/1925</topic><topic>631/378/116/2393</topic><topic>631/378/116/2396</topic><topic>Action Potentials - physiology</topic><topic>Cognitive ability</topic><topic>Computational neuroscience</topic><topic>Firing pattern</topic><topic>Flight</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning</topic><topic>Mental disorders</topic><topic>Models, Neurological</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurodegenerative diseases</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Saccadic eye movements</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohta, Morihiro</creatorcontrib><creatorcontrib>Asabuki, Toshitake</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohta, Morihiro</au><au>Asabuki, Toshitake</au><au>Fukai, Tomoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>4951</spage><epage>4951</epage><pages>4951-4951</pages><artnum>4951</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35322813</pmid><doi>10.1038/s41598-022-08953-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-03, Vol.12 (1), p.4951-4951, Article 4951
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/116/1925
631/378/116/2393
631/378/116/2396
Action Potentials - physiology
Cognitive ability
Computational neuroscience
Firing pattern
Flight
Humanities and Social Sciences
Humans
Learning
Mental disorders
Models, Neurological
Movement
multidisciplinary
Neural coding
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuronal Plasticity - physiology
Neurons - physiology
Saccadic eye movements
Science
Science (multidisciplinary)
Synaptic plasticity
title Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20bursts%20facilitate%20learning%20of%20L%C3%A9vy%20flight%20movements%20in%20recurrent%20neural%20network%20models&rft.jtitle=Scientific%20reports&rft.au=Ohta,%20Morihiro&rft.date=2022-03-23&rft.volume=12&rft.issue=1&rft.spage=4951&rft.epage=4951&rft.pages=4951-4951&rft.artnum=4951&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-08953-z&rft_dat=%3Cproquest_doaj_%3E2642186132%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642186132&rft_id=info:pmid/35322813&rfr_iscdi=true