Loading…
Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models
Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurode...
Saved in:
Published in: | Scientific reports 2022-03, Vol.12 (1), p.4951-4951, Article 4951 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3 |
container_end_page | 4951 |
container_issue | 1 |
container_start_page | 4951 |
container_title | Scientific reports |
container_volume | 12 |
creator | Ohta, Morihiro Asabuki, Toshitake Fukai, Tomoki |
description | Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps. |
doi_str_mv | 10.1038/s41598-022-08953-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347</doaj_id><sourcerecordid>2642186132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfG_JPYFCVWFrrQSl96tSTxOvSR2sZNF7RvxHLwYZlNKywFfxh7_5rM_e4riNSVnlHD5PglaK1kRxioiVc2ru2fFMSOirhhn7Pmj-VFxmtKO5FEzJah6WRzxOucl5ccFbPwcnU-uL7slpjmVFno3uhlmLEeE6J0fymDL7c8f-9vSjm64nssp7HFCn2nny4j9EmNelR6XCGMO8_cQv2bK4JheFS8sjAlP7-NJcfXp4ur8stp--bw5_7it-lqSuVLC0BrAUtF1rOemaRRYtMb0inWGZ7OsZWga2qJFbKjqOAFGW6uYbazhJ8VmlTUBdvomugnirQ7g9CER4qAhzq4fUXPAXAYcQLbCdkYCcKGIkAI45aLNWh9WrZulm9D02Vv29UT06Y5313oIey2V4LThWeDdvUAM3xZMs55c6nEcwWNYkmaNYFIRwkVG3_6D7sISfX6pA0VlQznLFFupPoaUItqHy1Cif_eDXvtB537Qh37Qd7nozWMbDyV_fj8DfAVS3vIDxr9n_0f2FyWExGY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642186132</pqid></control><display><type>article</type><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</creator><creatorcontrib>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</creatorcontrib><description>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-08953-z</identifier><identifier>PMID: 35322813</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/1925 ; 631/378/116/2393 ; 631/378/116/2396 ; Action Potentials - physiology ; Cognitive ability ; Computational neuroscience ; Firing pattern ; Flight ; Humanities and Social Sciences ; Humans ; Learning ; Mental disorders ; Models, Neurological ; Movement ; multidisciplinary ; Neural coding ; Neural networks ; Neural Networks, Computer ; Neurodegenerative diseases ; Neuronal Plasticity - physiology ; Neurons - physiology ; Saccadic eye movements ; Science ; Science (multidisciplinary) ; Synaptic plasticity</subject><ispartof>Scientific reports, 2022-03, Vol.12 (1), p.4951-4951, Article 4951</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</citedby><cites>FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642186132/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642186132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35322813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohta, Morihiro</creatorcontrib><creatorcontrib>Asabuki, Toshitake</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</description><subject>631/378/116/1925</subject><subject>631/378/116/2393</subject><subject>631/378/116/2396</subject><subject>Action Potentials - physiology</subject><subject>Cognitive ability</subject><subject>Computational neuroscience</subject><subject>Firing pattern</subject><subject>Flight</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning</subject><subject>Mental disorders</subject><subject>Models, Neurological</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurodegenerative diseases</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Saccadic eye movements</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synaptic plasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfG_JPYFCVWFrrQSl96tSTxOvSR2sZNF7RvxHLwYZlNKywFfxh7_5rM_e4riNSVnlHD5PglaK1kRxioiVc2ru2fFMSOirhhn7Pmj-VFxmtKO5FEzJah6WRzxOucl5ccFbPwcnU-uL7slpjmVFno3uhlmLEeE6J0fymDL7c8f-9vSjm64nssp7HFCn2nny4j9EmNelR6XCGMO8_cQv2bK4JheFS8sjAlP7-NJcfXp4ur8stp--bw5_7it-lqSuVLC0BrAUtF1rOemaRRYtMb0inWGZ7OsZWga2qJFbKjqOAFGW6uYbazhJ8VmlTUBdvomugnirQ7g9CER4qAhzq4fUXPAXAYcQLbCdkYCcKGIkAI45aLNWh9WrZulm9D02Vv29UT06Y5313oIey2V4LThWeDdvUAM3xZMs55c6nEcwWNYkmaNYFIRwkVG3_6D7sISfX6pA0VlQznLFFupPoaUItqHy1Cif_eDXvtB537Qh37Qd7nozWMbDyV_fj8DfAVS3vIDxr9n_0f2FyWExGY</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Ohta, Morihiro</creator><creator>Asabuki, Toshitake</creator><creator>Fukai, Tomoki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220323</creationdate><title>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</title><author>Ohta, Morihiro ; Asabuki, Toshitake ; Fukai, Tomoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/116/1925</topic><topic>631/378/116/2393</topic><topic>631/378/116/2396</topic><topic>Action Potentials - physiology</topic><topic>Cognitive ability</topic><topic>Computational neuroscience</topic><topic>Firing pattern</topic><topic>Flight</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning</topic><topic>Mental disorders</topic><topic>Models, Neurological</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurodegenerative diseases</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Saccadic eye movements</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohta, Morihiro</creatorcontrib><creatorcontrib>Asabuki, Toshitake</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohta, Morihiro</au><au>Asabuki, Toshitake</au><au>Fukai, Tomoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>4951</spage><epage>4951</epage><pages>4951-4951</pages><artnum>4951</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35322813</pmid><doi>10.1038/s41598-022-08953-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-03, Vol.12 (1), p.4951-4951, Article 4951 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3ae7f9a3aa874fbd8aa3490484a31347 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/116/1925 631/378/116/2393 631/378/116/2396 Action Potentials - physiology Cognitive ability Computational neuroscience Firing pattern Flight Humanities and Social Sciences Humans Learning Mental disorders Models, Neurological Movement multidisciplinary Neural coding Neural networks Neural Networks, Computer Neurodegenerative diseases Neuronal Plasticity - physiology Neurons - physiology Saccadic eye movements Science Science (multidisciplinary) Synaptic plasticity |
title | Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20bursts%20facilitate%20learning%20of%20L%C3%A9vy%20flight%20movements%20in%20recurrent%20neural%20network%20models&rft.jtitle=Scientific%20reports&rft.au=Ohta,%20Morihiro&rft.date=2022-03-23&rft.volume=12&rft.issue=1&rft.spage=4951&rft.epage=4951&rft.pages=4951-4951&rft.artnum=4951&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-08953-z&rft_dat=%3Cproquest_doaj_%3E2642186132%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-94d15aaf14bb2c3d669afefddc92bd3159272ed617efee619b30a217f92f6fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642186132&rft_id=info:pmid/35322813&rfr_iscdi=true |