Loading…
The influence of organoclays on the morphology, phase separation and thermal properties of polycarbonate-based polyurethane hybrid materials
Polycarbonate-based polyurethane (PC-PU) nanostructured composites were obtained using a one-step technique, by the addition of 1 wt.% organically modified clays (either bentonite or montmorillonite). Only aliphatic components (polycarbonate diol, hexamethylene-diisocyanate and 1,4-butane diol) were...
Saved in:
Published in: | Macedonian Journal of Chemistry and Chemical Engineering 2013-01, Vol.32 (1), p.151 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polycarbonate-based polyurethane (PC-PU) nanostructured composites were obtained using a one-step technique, by the addition of 1 wt.% organically modified clays (either bentonite or montmorillonite). Only aliphatic components (polycarbonate diol, hexamethylene-diisocyanate and 1,4-butane diol) were used as reactants. The hard segment content of the obtained polyurethanes was 30 wt.%. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were performed to investigate the morphology and hydrogen bonding formation in prepared elastomers. The influence of nanofiller addition on thermal properties of PC-PUs was studied using differential scanning calorimetry (DSC). The degree of phase separation of polyurethane nanocomposites was not influenced by the dispersion of silicate layers in the elastomeric matrix. It was determined that bentonite and montmorillonite affect the melting transition of hard segments and the recrystallization process, which is very important for the processing and recycling of the prepared polyurethane hybrid materials. |
---|---|
ISSN: | 1857-5552 1857-5625 |
DOI: | 10.20450/mjcce.2013.144 |