Loading…
mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells
The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for...
Saved in:
Published in: | Scientific reports 2019-08, Vol.9 (1), p.11910-13, Article 11910 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793 |
---|---|
cites | cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 11910 |
container_title | Scientific reports |
container_volume | 9 |
creator | Mawaribuchi, Shuuji Aiki, Yasuhiko Ikeda, Nozomi Ito, Yuzuru |
description | The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes (
COL9A2
,
DGKI
,
GBX2
,
KIF26B
,
MARCH1
,
PLXNA4
,
SLC24A4
,
TLR4
, and
ZHX3
) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine. |
doi_str_mv | 10.1038/s41598-019-48447-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47</doaj_id><sourcerecordid>2273733677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</originalsourceid><addsrcrecordid>eNp9UV1rFTEQDaLYUvsHfJCAz2vzudm8CKWoLRQF0eeQz9tcdjdrkhXtrze3W2v74rxkyJw5Z2YOAK8xeocRHc4Kw1wOHcKyYwNjort9Bo4JYrwjlJDnj_IjcFrKHrXgRDIsX4IjihkWmMpjoKevn8-hnh2c4iHzv5bsS4lphktOIY6-wDg3APS2Jufz1Jmoi3ewrKZUXT1MAd6sU0Ms45rjkqqfKyzVT9D6cSyvwIugx-JP798T8P3jh28Xl931l09XF-fXne0ZrZ3lgdmg-eD6wHtEnGdssAQ7ZpGWwVjWU6YdC1gzw51AIhBqJRs0Qk4ISU_A1cbrkt6rJcdJ598q6ajuPlLeKZ1rtKNX1CDUE-rD4DjjhrT7YWOIlEHYJiEa1_uNa1nN5J1tG2U9PiF9Wpnjjdqln6rvJafyMMzbe4Kcfqy-VLVPa57b_ooQQQWlvTjIkA1lcyol-_CggJE6uKw2l1VzWd25rG5b05vHsz20_PW0AegGKK0073z-p_0f2j_iDbR8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273733677</pqid></control><display><type>article</type><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</creator><creatorcontrib>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</creatorcontrib><description>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes (
COL9A2
,
DGKI
,
GBX2
,
KIF26B
,
MARCH1
,
PLXNA4
,
SLC24A4
,
TLR4
, and
ZHX3
) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-48447-z</identifier><identifier>PMID: 31417139</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/31 ; 13/51 ; 14/63 ; 38/39 ; 38/61 ; 631/532/1360 ; 631/532/2064/2117 ; Biomarkers ; Biomarkers - metabolism ; Cell culture ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cell Line ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell self-renewal ; Collagen (type IX) ; Collagen - pharmacology ; Drug Combinations ; Ectoderm ; Ectoderm - cytology ; Embryo cells ; Embryos ; Epitopes ; Extracellular matrix ; Extracellular Matrix - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental - drug effects ; Humanities and Social Sciences ; Humans ; Immunohistochemistry ; Laminin - pharmacology ; Mesenchyme ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; mRNA ; multidisciplinary ; Nerves ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Pluripotency ; Pluripotent Stem Cells - drug effects ; Pluripotent Stem Cells - metabolism ; Proteoglycans - pharmacology ; Regenerative medicine ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science ; Science (multidisciplinary) ; Stem cells ; TLR4 protein ; Toll-like receptors ; Vimentin ; Vimentin - metabolism ; Vitronectin ; Vitronectin - pharmacology</subject><ispartof>Scientific reports, 2019-08, Vol.9 (1), p.11910-13, Article 11910</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</citedby><cites>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2273733677/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2273733677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31417139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mawaribuchi, Shuuji</creatorcontrib><creatorcontrib>Aiki, Yasuhiko</creatorcontrib><creatorcontrib>Ikeda, Nozomi</creatorcontrib><creatorcontrib>Ito, Yuzuru</creatorcontrib><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes (
COL9A2
,
DGKI
,
GBX2
,
KIF26B
,
MARCH1
,
PLXNA4
,
SLC24A4
,
TLR4
, and
ZHX3
) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</description><subject>13/1</subject><subject>13/100</subject><subject>13/31</subject><subject>13/51</subject><subject>14/63</subject><subject>38/39</subject><subject>38/61</subject><subject>631/532/1360</subject><subject>631/532/2064/2117</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell self-renewal</subject><subject>Collagen (type IX)</subject><subject>Collagen - pharmacology</subject><subject>Drug Combinations</subject><subject>Ectoderm</subject><subject>Ectoderm - cytology</subject><subject>Embryo cells</subject><subject>Embryos</subject><subject>Epitopes</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Laminin - pharmacology</subject><subject>Mesenchyme</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Nerves</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - drug effects</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Proteoglycans - pharmacology</subject><subject>Regenerative medicine</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>Vimentin</subject><subject>Vimentin - metabolism</subject><subject>Vitronectin</subject><subject>Vitronectin - pharmacology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UV1rFTEQDaLYUvsHfJCAz2vzudm8CKWoLRQF0eeQz9tcdjdrkhXtrze3W2v74rxkyJw5Z2YOAK8xeocRHc4Kw1wOHcKyYwNjort9Bo4JYrwjlJDnj_IjcFrKHrXgRDIsX4IjihkWmMpjoKevn8-hnh2c4iHzv5bsS4lphktOIY6-wDg3APS2Jufz1Jmoi3ewrKZUXT1MAd6sU0Ms45rjkqqfKyzVT9D6cSyvwIugx-JP798T8P3jh28Xl931l09XF-fXne0ZrZ3lgdmg-eD6wHtEnGdssAQ7ZpGWwVjWU6YdC1gzw51AIhBqJRs0Qk4ISU_A1cbrkt6rJcdJ598q6ajuPlLeKZ1rtKNX1CDUE-rD4DjjhrT7YWOIlEHYJiEa1_uNa1nN5J1tG2U9PiF9Wpnjjdqln6rvJafyMMzbe4Kcfqy-VLVPa57b_ooQQQWlvTjIkA1lcyol-_CggJE6uKw2l1VzWd25rG5b05vHsz20_PW0AegGKK0073z-p_0f2j_iDbR8</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Mawaribuchi, Shuuji</creator><creator>Aiki, Yasuhiko</creator><creator>Ikeda, Nozomi</creator><creator>Ito, Yuzuru</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190815</creationdate><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><author>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/31</topic><topic>13/51</topic><topic>14/63</topic><topic>38/39</topic><topic>38/61</topic><topic>631/532/1360</topic><topic>631/532/2064/2117</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell self-renewal</topic><topic>Collagen (type IX)</topic><topic>Collagen - pharmacology</topic><topic>Drug Combinations</topic><topic>Ectoderm</topic><topic>Ectoderm - cytology</topic><topic>Embryo cells</topic><topic>Embryos</topic><topic>Epitopes</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Laminin - pharmacology</topic><topic>Mesenchyme</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Nerves</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - drug effects</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Proteoglycans - pharmacology</topic><topic>Regenerative medicine</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>Vimentin</topic><topic>Vimentin - metabolism</topic><topic>Vitronectin</topic><topic>Vitronectin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mawaribuchi, Shuuji</creatorcontrib><creatorcontrib>Aiki, Yasuhiko</creatorcontrib><creatorcontrib>Ikeda, Nozomi</creatorcontrib><creatorcontrib>Ito, Yuzuru</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mawaribuchi, Shuuji</au><au>Aiki, Yasuhiko</au><au>Ikeda, Nozomi</au><au>Ito, Yuzuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>11910</spage><epage>13</epage><pages>11910-13</pages><artnum>11910</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes (
COL9A2
,
DGKI
,
GBX2
,
KIF26B
,
MARCH1
,
PLXNA4
,
SLC24A4
,
TLR4
, and
ZHX3
) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31417139</pmid><doi>10.1038/s41598-019-48447-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-08, Vol.9 (1), p.11910-13, Article 11910 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/100 13/31 13/51 14/63 38/39 38/61 631/532/1360 631/532/2064/2117 Biomarkers Biomarkers - metabolism Cell culture Cell Differentiation - drug effects Cell Differentiation - genetics Cell Line Cell Membrane - drug effects Cell Membrane - metabolism Cell Nucleus - drug effects Cell Nucleus - metabolism Cell self-renewal Collagen (type IX) Collagen - pharmacology Drug Combinations Ectoderm Ectoderm - cytology Embryo cells Embryos Epitopes Extracellular matrix Extracellular Matrix - metabolism Gene expression Gene Expression Profiling Gene Expression Regulation, Developmental - drug effects Humanities and Social Sciences Humans Immunohistochemistry Laminin - pharmacology Mesenchyme MicroRNAs - genetics MicroRNAs - metabolism miRNA mRNA multidisciplinary Nerves Neurons - cytology Neurons - drug effects Neurons - metabolism Pluripotency Pluripotent Stem Cells - drug effects Pluripotent Stem Cells - metabolism Proteoglycans - pharmacology Regenerative medicine RNA, Messenger - genetics RNA, Messenger - metabolism Science Science (multidisciplinary) Stem cells TLR4 protein Toll-like receptors Vimentin Vimentin - metabolism Vitronectin Vitronectin - pharmacology |
title | mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mRNA%20and%20miRNA%20expression%20profiles%20in%20an%20ectoderm-biased%20substate%20of%20human%20pluripotent%20stem%20cells&rft.jtitle=Scientific%20reports&rft.au=Mawaribuchi,%20Shuuji&rft.date=2019-08-15&rft.volume=9&rft.issue=1&rft.spage=11910&rft.epage=13&rft.pages=11910-13&rft.artnum=11910&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-48447-z&rft_dat=%3Cproquest_doaj_%3E2273733677%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273733677&rft_id=info:pmid/31417139&rfr_iscdi=true |