Loading…

mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells

The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-08, Vol.9 (1), p.11910-13, Article 11910
Main Authors: Mawaribuchi, Shuuji, Aiki, Yasuhiko, Ikeda, Nozomi, Ito, Yuzuru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793
cites cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793
container_end_page 13
container_issue 1
container_start_page 11910
container_title Scientific reports
container_volume 9
creator Mawaribuchi, Shuuji
Aiki, Yasuhiko
Ikeda, Nozomi
Ito, Yuzuru
description The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes ( COL9A2 , DGKI , GBX2 , KIF26B , MARCH1 , PLXNA4 , SLC24A4 , TLR4 , and ZHX3 ) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.
doi_str_mv 10.1038/s41598-019-48447-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47</doaj_id><sourcerecordid>2273733677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</originalsourceid><addsrcrecordid>eNp9UV1rFTEQDaLYUvsHfJCAz2vzudm8CKWoLRQF0eeQz9tcdjdrkhXtrze3W2v74rxkyJw5Z2YOAK8xeocRHc4Kw1wOHcKyYwNjort9Bo4JYrwjlJDnj_IjcFrKHrXgRDIsX4IjihkWmMpjoKevn8-hnh2c4iHzv5bsS4lphktOIY6-wDg3APS2Jufz1Jmoi3ewrKZUXT1MAd6sU0Ms45rjkqqfKyzVT9D6cSyvwIugx-JP798T8P3jh28Xl931l09XF-fXne0ZrZ3lgdmg-eD6wHtEnGdssAQ7ZpGWwVjWU6YdC1gzw51AIhBqJRs0Qk4ISU_A1cbrkt6rJcdJ598q6ajuPlLeKZ1rtKNX1CDUE-rD4DjjhrT7YWOIlEHYJiEa1_uNa1nN5J1tG2U9PiF9Wpnjjdqln6rvJafyMMzbe4Kcfqy-VLVPa57b_ooQQQWlvTjIkA1lcyol-_CggJE6uKw2l1VzWd25rG5b05vHsz20_PW0AegGKK0073z-p_0f2j_iDbR8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273733677</pqid></control><display><type>article</type><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</creator><creatorcontrib>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</creatorcontrib><description>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes ( COL9A2 , DGKI , GBX2 , KIF26B , MARCH1 , PLXNA4 , SLC24A4 , TLR4 , and ZHX3 ) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-48447-z</identifier><identifier>PMID: 31417139</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/31 ; 13/51 ; 14/63 ; 38/39 ; 38/61 ; 631/532/1360 ; 631/532/2064/2117 ; Biomarkers ; Biomarkers - metabolism ; Cell culture ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cell Line ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell self-renewal ; Collagen (type IX) ; Collagen - pharmacology ; Drug Combinations ; Ectoderm ; Ectoderm - cytology ; Embryo cells ; Embryos ; Epitopes ; Extracellular matrix ; Extracellular Matrix - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental - drug effects ; Humanities and Social Sciences ; Humans ; Immunohistochemistry ; Laminin - pharmacology ; Mesenchyme ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; mRNA ; multidisciplinary ; Nerves ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Pluripotency ; Pluripotent Stem Cells - drug effects ; Pluripotent Stem Cells - metabolism ; Proteoglycans - pharmacology ; Regenerative medicine ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science ; Science (multidisciplinary) ; Stem cells ; TLR4 protein ; Toll-like receptors ; Vimentin ; Vimentin - metabolism ; Vitronectin ; Vitronectin - pharmacology</subject><ispartof>Scientific reports, 2019-08, Vol.9 (1), p.11910-13, Article 11910</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</citedby><cites>FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2273733677/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2273733677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31417139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mawaribuchi, Shuuji</creatorcontrib><creatorcontrib>Aiki, Yasuhiko</creatorcontrib><creatorcontrib>Ikeda, Nozomi</creatorcontrib><creatorcontrib>Ito, Yuzuru</creatorcontrib><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes ( COL9A2 , DGKI , GBX2 , KIF26B , MARCH1 , PLXNA4 , SLC24A4 , TLR4 , and ZHX3 ) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</description><subject>13/1</subject><subject>13/100</subject><subject>13/31</subject><subject>13/51</subject><subject>14/63</subject><subject>38/39</subject><subject>38/61</subject><subject>631/532/1360</subject><subject>631/532/2064/2117</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell self-renewal</subject><subject>Collagen (type IX)</subject><subject>Collagen - pharmacology</subject><subject>Drug Combinations</subject><subject>Ectoderm</subject><subject>Ectoderm - cytology</subject><subject>Embryo cells</subject><subject>Embryos</subject><subject>Epitopes</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Laminin - pharmacology</subject><subject>Mesenchyme</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Nerves</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - drug effects</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Proteoglycans - pharmacology</subject><subject>Regenerative medicine</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>Vimentin</subject><subject>Vimentin - metabolism</subject><subject>Vitronectin</subject><subject>Vitronectin - pharmacology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UV1rFTEQDaLYUvsHfJCAz2vzudm8CKWoLRQF0eeQz9tcdjdrkhXtrze3W2v74rxkyJw5Z2YOAK8xeocRHc4Kw1wOHcKyYwNjort9Bo4JYrwjlJDnj_IjcFrKHrXgRDIsX4IjihkWmMpjoKevn8-hnh2c4iHzv5bsS4lphktOIY6-wDg3APS2Jufz1Jmoi3ewrKZUXT1MAd6sU0Ms45rjkqqfKyzVT9D6cSyvwIugx-JP798T8P3jh28Xl931l09XF-fXne0ZrZ3lgdmg-eD6wHtEnGdssAQ7ZpGWwVjWU6YdC1gzw51AIhBqJRs0Qk4ISU_A1cbrkt6rJcdJ598q6ajuPlLeKZ1rtKNX1CDUE-rD4DjjhrT7YWOIlEHYJiEa1_uNa1nN5J1tG2U9PiF9Wpnjjdqln6rvJafyMMzbe4Kcfqy-VLVPa57b_ooQQQWlvTjIkA1lcyol-_CggJE6uKw2l1VzWd25rG5b05vHsz20_PW0AegGKK0073z-p_0f2j_iDbR8</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Mawaribuchi, Shuuji</creator><creator>Aiki, Yasuhiko</creator><creator>Ikeda, Nozomi</creator><creator>Ito, Yuzuru</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190815</creationdate><title>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</title><author>Mawaribuchi, Shuuji ; Aiki, Yasuhiko ; Ikeda, Nozomi ; Ito, Yuzuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/31</topic><topic>13/51</topic><topic>14/63</topic><topic>38/39</topic><topic>38/61</topic><topic>631/532/1360</topic><topic>631/532/2064/2117</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell self-renewal</topic><topic>Collagen (type IX)</topic><topic>Collagen - pharmacology</topic><topic>Drug Combinations</topic><topic>Ectoderm</topic><topic>Ectoderm - cytology</topic><topic>Embryo cells</topic><topic>Embryos</topic><topic>Epitopes</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Laminin - pharmacology</topic><topic>Mesenchyme</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Nerves</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - drug effects</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Proteoglycans - pharmacology</topic><topic>Regenerative medicine</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>Vimentin</topic><topic>Vimentin - metabolism</topic><topic>Vitronectin</topic><topic>Vitronectin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mawaribuchi, Shuuji</creatorcontrib><creatorcontrib>Aiki, Yasuhiko</creatorcontrib><creatorcontrib>Ikeda, Nozomi</creatorcontrib><creatorcontrib>Ito, Yuzuru</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mawaribuchi, Shuuji</au><au>Aiki, Yasuhiko</au><au>Ikeda, Nozomi</au><au>Ito, Yuzuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>11910</spage><epage>13</epage><pages>11910-13</pages><artnum>11910</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The potential applications of human pluripotent stem cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells in cell therapy and regenerative medicine have been widely studied. The precise definition of pluripotent stem cell status during culture using biomarkers is essential for basic research and regenerative medicine. Culture conditions, including extracellular matrices, influence the balance between self-renewal and differentiation. Accordingly, to explore biomarkers for defining and monitoring the pluripotent substates during culture, we established different substates in H9 human ES cells by changing the extracellular matrix from vitronectin to Matrigel. The substate was characterised by low and high expression of the pluripotency marker R-10G epitope and the mesenchymal marker vimentin, respectively. Immunohistochemistry, induction of the three germ layers, and exhaustive expression analysis showed that the substate was ectoderm-biased, tended to differentiate into nerves, but retained the potential to differentiate into the three germ layers. Further integrated analyses of mRNA and miRNA microarrays and qPCR analysis showed that nine genes ( COL9A2 , DGKI , GBX2 , KIF26B , MARCH1 , PLXNA4 , SLC24A4 , TLR4 , and ZHX3 ) were upregulated in the ectoderm-biased cells as ectoderm-biased biomarker candidates in pluripotent stem cells. Our findings provide important insights into ectoderm-biased substates of human pluripotent stem cells in the fields of basic research and regenerative medicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31417139</pmid><doi>10.1038/s41598-019-48447-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-08, Vol.9 (1), p.11910-13, Article 11910
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b00623ef8d545b28441bb299f7cad47
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/100
13/31
13/51
14/63
38/39
38/61
631/532/1360
631/532/2064/2117
Biomarkers
Biomarkers - metabolism
Cell culture
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cell Line
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cell self-renewal
Collagen (type IX)
Collagen - pharmacology
Drug Combinations
Ectoderm
Ectoderm - cytology
Embryo cells
Embryos
Epitopes
Extracellular matrix
Extracellular Matrix - metabolism
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental - drug effects
Humanities and Social Sciences
Humans
Immunohistochemistry
Laminin - pharmacology
Mesenchyme
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
mRNA
multidisciplinary
Nerves
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Pluripotency
Pluripotent Stem Cells - drug effects
Pluripotent Stem Cells - metabolism
Proteoglycans - pharmacology
Regenerative medicine
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Stem cells
TLR4 protein
Toll-like receptors
Vimentin
Vimentin - metabolism
Vitronectin
Vitronectin - pharmacology
title mRNA and miRNA expression profiles in an ectoderm-biased substate of human pluripotent stem cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mRNA%20and%20miRNA%20expression%20profiles%20in%20an%20ectoderm-biased%20substate%20of%20human%20pluripotent%20stem%20cells&rft.jtitle=Scientific%20reports&rft.au=Mawaribuchi,%20Shuuji&rft.date=2019-08-15&rft.volume=9&rft.issue=1&rft.spage=11910&rft.epage=13&rft.pages=11910-13&rft.artnum=11910&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-48447-z&rft_dat=%3Cproquest_doaj_%3E2273733677%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-c5f4cfa58d6f5602de448c21d4c0a9fbc4634ad4f1a4b5d707f23c948a00d7793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273733677&rft_id=info:pmid/31417139&rfr_iscdi=true