Loading…

Optimization of tensor network codes with reinforcement learning

Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2024-02, Vol.26 (2), p.23024
Main Authors: Mauron, Caroline, Farrelly, Terry, Stace, Thomas M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3
cites cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3
container_end_page
container_issue 2
container_start_page 23024
container_title New journal of physics
container_volume 26
creator Mauron, Caroline
Farrelly, Terry
Stace, Thomas M
description Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a 10 % frequency after 1000 trials, vs a theoretical 0.16 % from random search, an improvement by a factor of 65.
doi_str_mv 10.1088/1367-2630/ad23a6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b02e8090624479380cda0befa609512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b02e8090624479380cda0befa609512</doaj_id><sourcerecordid>2926187863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxSMEEqWwM0ZiYCH0bCe2s4EqPipV6gKz5cR2cWjt4Liq4K8nJagwIKY7nX7v3dNLknME1wg4nyBCWYYpgYlUmEh6kIz2p8Nf-3Fy0nUNAEIc41Fys2ijXdsPGa13qTdp1K7zIXU6bn14TWuvdJdubXxJg7bO-FDrtXYxXWkZnHXL0-TIyFWnz77nOHm-v3uaPmbzxcNsejvP6jznMUNVWRlZ1AQZo0DmUDJuWFH0UTlRSqGcFRUjDKGKay4NU7lSuiDEaFJSXJFxMht8lZeNaINdy_AuvLTi6-DDUsgQbb3SglSANYcSKM5zVhIOtZJQaSMplAXCvdfF4NUG_7bRXRSN3wTXxxe4xBRxxinpKRioOviuC9rsvyIQu87FrlSxK1UMnfeSq0Fiffvj-Q9--QfumranBBaACeBctMqQT3MTjuY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926187863</pqid></control><display><type>article</type><title>Optimization of tensor network codes with reinforcement learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</creator><creatorcontrib>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</creatorcontrib><description>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a 10 % frequency after 1000 trials, vs a theoretical 0.16 % from random search, an improvement by a factor of 65.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ad23a6</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Codes ; Error correction &amp; detection ; Mathematical analysis ; Optimization ; Physics ; quantum error correction ; reinforcement learning ; tensor networks ; Tensors</subject><ispartof>New journal of physics, 2024-02, Vol.26 (2), p.23024</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</citedby><cites>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</cites><orcidid>0000-0002-2300-1394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2926187863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Mauron, Caroline</creatorcontrib><creatorcontrib>Farrelly, Terry</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><title>Optimization of tensor network codes with reinforcement learning</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a 10 % frequency after 1000 trials, vs a theoretical 0.16 % from random search, an improvement by a factor of 65.</description><subject>Codes</subject><subject>Error correction &amp; detection</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Physics</subject><subject>quantum error correction</subject><subject>reinforcement learning</subject><subject>tensor networks</subject><subject>Tensors</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kL1PwzAQxSMEEqWwM0ZiYCH0bCe2s4EqPipV6gKz5cR2cWjt4Liq4K8nJagwIKY7nX7v3dNLknME1wg4nyBCWYYpgYlUmEh6kIz2p8Nf-3Fy0nUNAEIc41Fys2ijXdsPGa13qTdp1K7zIXU6bn14TWuvdJdubXxJg7bO-FDrtXYxXWkZnHXL0-TIyFWnz77nOHm-v3uaPmbzxcNsejvP6jznMUNVWRlZ1AQZo0DmUDJuWFH0UTlRSqGcFRUjDKGKay4NU7lSuiDEaFJSXJFxMht8lZeNaINdy_AuvLTi6-DDUsgQbb3SglSANYcSKM5zVhIOtZJQaSMplAXCvdfF4NUG_7bRXRSN3wTXxxe4xBRxxinpKRioOviuC9rsvyIQu87FrlSxK1UMnfeSq0Fiffvj-Q9--QfumranBBaACeBctMqQT3MTjuY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Mauron, Caroline</creator><creator>Farrelly, Terry</creator><creator>Stace, Thomas M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2300-1394</orcidid></search><sort><creationdate>20240201</creationdate><title>Optimization of tensor network codes with reinforcement learning</title><author>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Error correction &amp; detection</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Physics</topic><topic>quantum error correction</topic><topic>reinforcement learning</topic><topic>tensor networks</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauron, Caroline</creatorcontrib><creatorcontrib>Farrelly, Terry</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauron, Caroline</au><au>Farrelly, Terry</au><au>Stace, Thomas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of tensor network codes with reinforcement learning</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>23024</spage><pages>23024-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a 10 % frequency after 1000 trials, vs a theoretical 0.16 % from random search, an improvement by a factor of 65.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ad23a6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2300-1394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2024-02, Vol.26 (2), p.23024
issn 1367-2630
1367-2630
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b02e8090624479380cda0befa609512
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Codes
Error correction & detection
Mathematical analysis
Optimization
Physics
quantum error correction
reinforcement learning
tensor networks
Tensors
title Optimization of tensor network codes with reinforcement learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20tensor%20network%20codes%20with%20reinforcement%20learning&rft.jtitle=New%20journal%20of%20physics&rft.au=Mauron,%20Caroline&rft.date=2024-02-01&rft.volume=26&rft.issue=2&rft.spage=23024&rft.pages=23024-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ad23a6&rft_dat=%3Cproquest_doaj_%3E2926187863%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926187863&rft_id=info:pmid/&rfr_iscdi=true