Loading…
Optimization of tensor network codes with reinforcement learning
Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL...
Saved in:
Published in: | New journal of physics 2024-02, Vol.26 (2), p.23024 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 23024 |
container_title | New journal of physics |
container_volume | 26 |
creator | Mauron, Caroline Farrelly, Terry Stace, Thomas M |
description | Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a
10
%
frequency after 1000 trials, vs a theoretical
0.16
%
from random search, an improvement by a factor of 65. |
doi_str_mv | 10.1088/1367-2630/ad23a6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b02e8090624479380cda0befa609512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b02e8090624479380cda0befa609512</doaj_id><sourcerecordid>2926187863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxSMEEqWwM0ZiYCH0bCe2s4EqPipV6gKz5cR2cWjt4Liq4K8nJagwIKY7nX7v3dNLknME1wg4nyBCWYYpgYlUmEh6kIz2p8Nf-3Fy0nUNAEIc41Fys2ijXdsPGa13qTdp1K7zIXU6bn14TWuvdJdubXxJg7bO-FDrtXYxXWkZnHXL0-TIyFWnz77nOHm-v3uaPmbzxcNsejvP6jznMUNVWRlZ1AQZo0DmUDJuWFH0UTlRSqGcFRUjDKGKay4NU7lSuiDEaFJSXJFxMht8lZeNaINdy_AuvLTi6-DDUsgQbb3SglSANYcSKM5zVhIOtZJQaSMplAXCvdfF4NUG_7bRXRSN3wTXxxe4xBRxxinpKRioOviuC9rsvyIQu87FrlSxK1UMnfeSq0Fiffvj-Q9--QfumranBBaACeBctMqQT3MTjuY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926187863</pqid></control><display><type>article</type><title>Optimization of tensor network codes with reinforcement learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</creator><creatorcontrib>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</creatorcontrib><description>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a
10
%
frequency after 1000 trials, vs a theoretical
0.16
%
from random search, an improvement by a factor of 65.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ad23a6</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Codes ; Error correction & detection ; Mathematical analysis ; Optimization ; Physics ; quantum error correction ; reinforcement learning ; tensor networks ; Tensors</subject><ispartof>New journal of physics, 2024-02, Vol.26 (2), p.23024</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</citedby><cites>FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</cites><orcidid>0000-0002-2300-1394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2926187863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Mauron, Caroline</creatorcontrib><creatorcontrib>Farrelly, Terry</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><title>Optimization of tensor network codes with reinforcement learning</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a
10
%
frequency after 1000 trials, vs a theoretical
0.16
%
from random search, an improvement by a factor of 65.</description><subject>Codes</subject><subject>Error correction & detection</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Physics</subject><subject>quantum error correction</subject><subject>reinforcement learning</subject><subject>tensor networks</subject><subject>Tensors</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kL1PwzAQxSMEEqWwM0ZiYCH0bCe2s4EqPipV6gKz5cR2cWjt4Liq4K8nJagwIKY7nX7v3dNLknME1wg4nyBCWYYpgYlUmEh6kIz2p8Nf-3Fy0nUNAEIc41Fys2ijXdsPGa13qTdp1K7zIXU6bn14TWuvdJdubXxJg7bO-FDrtXYxXWkZnHXL0-TIyFWnz77nOHm-v3uaPmbzxcNsejvP6jznMUNVWRlZ1AQZo0DmUDJuWFH0UTlRSqGcFRUjDKGKay4NU7lSuiDEaFJSXJFxMht8lZeNaINdy_AuvLTi6-DDUsgQbb3SglSANYcSKM5zVhIOtZJQaSMplAXCvdfF4NUG_7bRXRSN3wTXxxe4xBRxxinpKRioOviuC9rsvyIQu87FrlSxK1UMnfeSq0Fiffvj-Q9--QfumranBBaACeBctMqQT3MTjuY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Mauron, Caroline</creator><creator>Farrelly, Terry</creator><creator>Stace, Thomas M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2300-1394</orcidid></search><sort><creationdate>20240201</creationdate><title>Optimization of tensor network codes with reinforcement learning</title><author>Mauron, Caroline ; Farrelly, Terry ; Stace, Thomas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Error correction & detection</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Physics</topic><topic>quantum error correction</topic><topic>reinforcement learning</topic><topic>tensor networks</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauron, Caroline</creatorcontrib><creatorcontrib>Farrelly, Terry</creatorcontrib><creatorcontrib>Stace, Thomas M</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauron, Caroline</au><au>Farrelly, Terry</au><au>Stace, Thomas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of tensor network codes with reinforcement learning</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>23024</spage><pages>23024-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Tensor network codes enable structured construction and manipulation of stabilizer codes out of small seed codes. Here, we apply reinforcement learning (RL) to tensor network code geometries and demonstrate how optimal stabilizer codes can be found. Using the projective simulation framework, our RL agent consistently finds the best possible codes given an environment and set of allowed actions, including for codes with more than one logical qubit. The agent also consistently outperforms a random search, for example finding an optimal code with a
10
%
frequency after 1000 trials, vs a theoretical
0.16
%
from random search, an improvement by a factor of 65.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ad23a6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2300-1394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2024-02, Vol.26 (2), p.23024 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b02e8090624479380cda0befa609512 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Codes Error correction & detection Mathematical analysis Optimization Physics quantum error correction reinforcement learning tensor networks Tensors |
title | Optimization of tensor network codes with reinforcement learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20tensor%20network%20codes%20with%20reinforcement%20learning&rft.jtitle=New%20journal%20of%20physics&rft.au=Mauron,%20Caroline&rft.date=2024-02-01&rft.volume=26&rft.issue=2&rft.spage=23024&rft.pages=23024-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ad23a6&rft_dat=%3Cproquest_doaj_%3E2926187863%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-1b9bfa5c31ffd0a40978f75523a83ddd1475b73711b8e8af7d4dde533fe3962b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926187863&rft_id=info:pmid/&rfr_iscdi=true |