Loading…
Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits
Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integr...
Saved in:
Published in: | Cell genomics 2023-10, Vol.3 (10), p.100390, Article 100390 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793 |
container_end_page | |
container_issue | 10 |
container_start_page | 100390 |
container_title | Cell genomics |
container_volume | 3 |
creator | Li, Jinghui Zhao, Tianjing Guan, Dailu Pan, Zhangyuan Bai, Zhonghao Teng, Jinyan Zhang, Zhe Zheng, Zhili Zeng, Jian Zhou, Huaijun Fang, Lingzhao Cheng, Hao |
description | Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.
[Display omitted]
•DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits
Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans. |
doi_str_mv | 10.1016/j.xgen.2023.100390 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666979X23001878</els_id><doaj_id>oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42</doaj_id><sourcerecordid>2880820735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAPnLZxZ58ORISQhW0lVbi0gM3a-JMsl4ldrCTZfsGPDZOU6r2wsn2-D-_-UyS94JvBRfFp8P21JHdAoc0Gnha8VfJORRFsanK6ufrZ_ez5DKEA-ccZBSW6dvkLC1lIaPPefJnR-itsR1rZ6sn4yz2TDsbyB9xebKapt9Elu3nAS1D27DRdGxyrCFtxj15RkfXzw-u_p4NpPdoTRgCm21Dvr9f4DFVYnQaPYWwQBeMdsPY04lNHs0U3iVvWuwDXT6eF8nd9293Vzeb3Y_r26uvu43OAaaNyIREhBaBqlhDqeuyAMkxK5pUYIkiL7XkUOaSWqhlrTPgTQYNF9jKskovktsV2zg8qNGbISatHBr1YHC-U-gno3tSaQ3IUXBogTKRAZa81jFM1YhKUgaR9WVljXM9UKPJxlL6F9CXP9bsVeeOSvBcVkW6ED4-Erz7NVOY1GCCpr5HS24OCqTkEuLM8iiFVaq9C8FT-xRHcLVshDqoZSPUshFq3Yjo9OF5hk8u_-YfBZ9XAcWWHw15FbQhq6kxnvQUm2L-x_8LXk_LUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880820735</pqid></control><display><type>article</type><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</creator><creatorcontrib>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</creatorcontrib><description>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.
[Display omitted]
•DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits
Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</description><identifier>ISSN: 2666-979X</identifier><identifier>EISSN: 2666-979X</identifier><identifier>DOI: 10.1016/j.xgen.2023.100390</identifier><identifier>PMID: 37868039</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>complex trait ; deep learning ; functional conservation ; gene expression ; human ; pig</subject><ispartof>Cell genomics, 2023-10, Vol.3 (10), p.100390, Article 100390</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</citedby><cites>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</cites><orcidid>0000-0001-5146-7231 ; 0000-0002-4854-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589632/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666979X23001878$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37868039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinghui</creatorcontrib><creatorcontrib>Zhao, Tianjing</creatorcontrib><creatorcontrib>Guan, Dailu</creatorcontrib><creatorcontrib>Pan, Zhangyuan</creatorcontrib><creatorcontrib>Bai, Zhonghao</creatorcontrib><creatorcontrib>Teng, Jinyan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Zheng, Zhili</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Zhou, Huaijun</creatorcontrib><creatorcontrib>Fang, Lingzhao</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><title>Cell genomics</title><addtitle>Cell Genom</addtitle><description>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.
[Display omitted]
•DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits
Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</description><subject>complex trait</subject><subject>deep learning</subject><subject>functional conservation</subject><subject>gene expression</subject><subject>human</subject><subject>pig</subject><issn>2666-979X</issn><issn>2666-979X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAPnLZxZ58ORISQhW0lVbi0gM3a-JMsl4ldrCTZfsGPDZOU6r2wsn2-D-_-UyS94JvBRfFp8P21JHdAoc0Gnha8VfJORRFsanK6ufrZ_ez5DKEA-ccZBSW6dvkLC1lIaPPefJnR-itsR1rZ6sn4yz2TDsbyB9xebKapt9Elu3nAS1D27DRdGxyrCFtxj15RkfXzw-u_p4NpPdoTRgCm21Dvr9f4DFVYnQaPYWwQBeMdsPY04lNHs0U3iVvWuwDXT6eF8nd9293Vzeb3Y_r26uvu43OAaaNyIREhBaBqlhDqeuyAMkxK5pUYIkiL7XkUOaSWqhlrTPgTQYNF9jKskovktsV2zg8qNGbISatHBr1YHC-U-gno3tSaQ3IUXBogTKRAZa81jFM1YhKUgaR9WVljXM9UKPJxlL6F9CXP9bsVeeOSvBcVkW6ED4-Erz7NVOY1GCCpr5HS24OCqTkEuLM8iiFVaq9C8FT-xRHcLVshDqoZSPUshFq3Yjo9OF5hk8u_-YfBZ9XAcWWHw15FbQhq6kxnvQUm2L-x_8LXk_LUA</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Li, Jinghui</creator><creator>Zhao, Tianjing</creator><creator>Guan, Dailu</creator><creator>Pan, Zhangyuan</creator><creator>Bai, Zhonghao</creator><creator>Teng, Jinyan</creator><creator>Zhang, Zhe</creator><creator>Zheng, Zhili</creator><creator>Zeng, Jian</creator><creator>Zhou, Huaijun</creator><creator>Fang, Lingzhao</creator><creator>Cheng, Hao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5146-7231</orcidid><orcidid>https://orcid.org/0000-0002-4854-2613</orcidid></search><sort><creationdate>20231011</creationdate><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><author>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>complex trait</topic><topic>deep learning</topic><topic>functional conservation</topic><topic>gene expression</topic><topic>human</topic><topic>pig</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinghui</creatorcontrib><creatorcontrib>Zhao, Tianjing</creatorcontrib><creatorcontrib>Guan, Dailu</creatorcontrib><creatorcontrib>Pan, Zhangyuan</creatorcontrib><creatorcontrib>Bai, Zhonghao</creatorcontrib><creatorcontrib>Teng, Jinyan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Zheng, Zhili</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Zhou, Huaijun</creatorcontrib><creatorcontrib>Fang, Lingzhao</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinghui</au><au>Zhao, Tianjing</au><au>Guan, Dailu</au><au>Pan, Zhangyuan</au><au>Bai, Zhonghao</au><au>Teng, Jinyan</au><au>Zhang, Zhe</au><au>Zheng, Zhili</au><au>Zeng, Jian</au><au>Zhou, Huaijun</au><au>Fang, Lingzhao</au><au>Cheng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</atitle><jtitle>Cell genomics</jtitle><addtitle>Cell Genom</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>3</volume><issue>10</issue><spage>100390</spage><pages>100390-</pages><artnum>100390</artnum><issn>2666-979X</issn><eissn>2666-979X</eissn><abstract>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.
[Display omitted]
•DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits
Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37868039</pmid><doi>10.1016/j.xgen.2023.100390</doi><orcidid>https://orcid.org/0000-0001-5146-7231</orcidid><orcidid>https://orcid.org/0000-0002-4854-2613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-979X |
ispartof | Cell genomics, 2023-10, Vol.3 (10), p.100390, Article 100390 |
issn | 2666-979X 2666-979X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42 |
source | Open Access: PubMed Central; ScienceDirect® |
subjects | complex trait deep learning functional conservation gene expression human pig |
title | Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20functional%20conservation%20between%20human%20and%20pig%20to%20decipher%20evolutionary%20mechanisms%20underlying%20gene%20expression%20and%20complex%20traits&rft.jtitle=Cell%20genomics&rft.au=Li,%20Jinghui&rft.date=2023-10-11&rft.volume=3&rft.issue=10&rft.spage=100390&rft.pages=100390-&rft.artnum=100390&rft.issn=2666-979X&rft.eissn=2666-979X&rft_id=info:doi/10.1016/j.xgen.2023.100390&rft_dat=%3Cproquest_doaj_%3E2880820735%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880820735&rft_id=info:pmid/37868039&rfr_iscdi=true |