Loading…

Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits

Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integr...

Full description

Saved in:
Bibliographic Details
Published in:Cell genomics 2023-10, Vol.3 (10), p.100390, Article 100390
Main Authors: Li, Jinghui, Zhao, Tianjing, Guan, Dailu, Pan, Zhangyuan, Bai, Zhonghao, Teng, Jinyan, Zhang, Zhe, Zheng, Zhili, Zeng, Jian, Zhou, Huaijun, Fang, Lingzhao, Cheng, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793
cites cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793
container_end_page
container_issue 10
container_start_page 100390
container_title Cell genomics
container_volume 3
creator Li, Jinghui
Zhao, Tianjing
Guan, Dailu
Pan, Zhangyuan
Bai, Zhonghao
Teng, Jinyan
Zhang, Zhe
Zheng, Zhili
Zeng, Jian
Zhou, Huaijun
Fang, Lingzhao
Cheng, Hao
description Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes. [Display omitted] •DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.
doi_str_mv 10.1016/j.xgen.2023.100390
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666979X23001878</els_id><doaj_id>oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42</doaj_id><sourcerecordid>2880820735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAPnLZxZ58ORISQhW0lVbi0gM3a-JMsl4ldrCTZfsGPDZOU6r2wsn2-D-_-UyS94JvBRfFp8P21JHdAoc0Gnha8VfJORRFsanK6ufrZ_ez5DKEA-ccZBSW6dvkLC1lIaPPefJnR-itsR1rZ6sn4yz2TDsbyB9xebKapt9Elu3nAS1D27DRdGxyrCFtxj15RkfXzw-u_p4NpPdoTRgCm21Dvr9f4DFVYnQaPYWwQBeMdsPY04lNHs0U3iVvWuwDXT6eF8nd9293Vzeb3Y_r26uvu43OAaaNyIREhBaBqlhDqeuyAMkxK5pUYIkiL7XkUOaSWqhlrTPgTQYNF9jKskovktsV2zg8qNGbISatHBr1YHC-U-gno3tSaQ3IUXBogTKRAZa81jFM1YhKUgaR9WVljXM9UKPJxlL6F9CXP9bsVeeOSvBcVkW6ED4-Erz7NVOY1GCCpr5HS24OCqTkEuLM8iiFVaq9C8FT-xRHcLVshDqoZSPUshFq3Yjo9OF5hk8u_-YfBZ9XAcWWHw15FbQhq6kxnvQUm2L-x_8LXk_LUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880820735</pqid></control><display><type>article</type><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</creator><creatorcontrib>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</creatorcontrib><description>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes. [Display omitted] •DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</description><identifier>ISSN: 2666-979X</identifier><identifier>EISSN: 2666-979X</identifier><identifier>DOI: 10.1016/j.xgen.2023.100390</identifier><identifier>PMID: 37868039</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>complex trait ; deep learning ; functional conservation ; gene expression ; human ; pig</subject><ispartof>Cell genomics, 2023-10, Vol.3 (10), p.100390, Article 100390</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</citedby><cites>FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</cites><orcidid>0000-0001-5146-7231 ; 0000-0002-4854-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589632/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666979X23001878$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37868039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinghui</creatorcontrib><creatorcontrib>Zhao, Tianjing</creatorcontrib><creatorcontrib>Guan, Dailu</creatorcontrib><creatorcontrib>Pan, Zhangyuan</creatorcontrib><creatorcontrib>Bai, Zhonghao</creatorcontrib><creatorcontrib>Teng, Jinyan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Zheng, Zhili</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Zhou, Huaijun</creatorcontrib><creatorcontrib>Fang, Lingzhao</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><title>Cell genomics</title><addtitle>Cell Genom</addtitle><description>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes. [Display omitted] •DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</description><subject>complex trait</subject><subject>deep learning</subject><subject>functional conservation</subject><subject>gene expression</subject><subject>human</subject><subject>pig</subject><issn>2666-979X</issn><issn>2666-979X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAPnLZxZ58ORISQhW0lVbi0gM3a-JMsl4ldrCTZfsGPDZOU6r2wsn2-D-_-UyS94JvBRfFp8P21JHdAoc0Gnha8VfJORRFsanK6ufrZ_ez5DKEA-ccZBSW6dvkLC1lIaPPefJnR-itsR1rZ6sn4yz2TDsbyB9xebKapt9Elu3nAS1D27DRdGxyrCFtxj15RkfXzw-u_p4NpPdoTRgCm21Dvr9f4DFVYnQaPYWwQBeMdsPY04lNHs0U3iVvWuwDXT6eF8nd9293Vzeb3Y_r26uvu43OAaaNyIREhBaBqlhDqeuyAMkxK5pUYIkiL7XkUOaSWqhlrTPgTQYNF9jKskovktsV2zg8qNGbISatHBr1YHC-U-gno3tSaQ3IUXBogTKRAZa81jFM1YhKUgaR9WVljXM9UKPJxlL6F9CXP9bsVeeOSvBcVkW6ED4-Erz7NVOY1GCCpr5HS24OCqTkEuLM8iiFVaq9C8FT-xRHcLVshDqoZSPUshFq3Yjo9OF5hk8u_-YfBZ9XAcWWHw15FbQhq6kxnvQUm2L-x_8LXk_LUA</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Li, Jinghui</creator><creator>Zhao, Tianjing</creator><creator>Guan, Dailu</creator><creator>Pan, Zhangyuan</creator><creator>Bai, Zhonghao</creator><creator>Teng, Jinyan</creator><creator>Zhang, Zhe</creator><creator>Zheng, Zhili</creator><creator>Zeng, Jian</creator><creator>Zhou, Huaijun</creator><creator>Fang, Lingzhao</creator><creator>Cheng, Hao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5146-7231</orcidid><orcidid>https://orcid.org/0000-0002-4854-2613</orcidid></search><sort><creationdate>20231011</creationdate><title>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</title><author>Li, Jinghui ; Zhao, Tianjing ; Guan, Dailu ; Pan, Zhangyuan ; Bai, Zhonghao ; Teng, Jinyan ; Zhang, Zhe ; Zheng, Zhili ; Zeng, Jian ; Zhou, Huaijun ; Fang, Lingzhao ; Cheng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>complex trait</topic><topic>deep learning</topic><topic>functional conservation</topic><topic>gene expression</topic><topic>human</topic><topic>pig</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinghui</creatorcontrib><creatorcontrib>Zhao, Tianjing</creatorcontrib><creatorcontrib>Guan, Dailu</creatorcontrib><creatorcontrib>Pan, Zhangyuan</creatorcontrib><creatorcontrib>Bai, Zhonghao</creatorcontrib><creatorcontrib>Teng, Jinyan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Zheng, Zhili</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Zhou, Huaijun</creatorcontrib><creatorcontrib>Fang, Lingzhao</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinghui</au><au>Zhao, Tianjing</au><au>Guan, Dailu</au><au>Pan, Zhangyuan</au><au>Bai, Zhonghao</au><au>Teng, Jinyan</au><au>Zhang, Zhe</au><au>Zheng, Zhili</au><au>Zeng, Jian</au><au>Zhou, Huaijun</au><au>Fang, Lingzhao</au><au>Cheng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits</atitle><jtitle>Cell genomics</jtitle><addtitle>Cell Genom</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>3</volume><issue>10</issue><spage>100390</spage><pages>100390-</pages><artnum>100390</artnum><issn>2666-979X</issn><eissn>2666-979X</eissn><abstract>Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes. [Display omitted] •DeepGCF improves the prediction accuracy of functional conservation•Sequence conservation shows a U-shaped relationship with functional conservation•Functionally conserved regions play key roles in regulatory activities•Functionally conserved regions show heritability enrichment in human complex traits Li et al. developed a deep learning model, DeepGCF, to learn the genomic conservation at the functional level between human and pig using epigenome and gene expression profiles. They identified a core set of regions as functionally conserved that plays key roles in gene regulation and complex traits in humans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37868039</pmid><doi>10.1016/j.xgen.2023.100390</doi><orcidid>https://orcid.org/0000-0001-5146-7231</orcidid><orcidid>https://orcid.org/0000-0002-4854-2613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-979X
ispartof Cell genomics, 2023-10, Vol.3 (10), p.100390, Article 100390
issn 2666-979X
2666-979X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b2a0a102f2e4142a70bc6d39d198e42
source Open Access: PubMed Central; ScienceDirect®
subjects complex trait
deep learning
functional conservation
gene expression
human
pig
title Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20functional%20conservation%20between%20human%20and%20pig%20to%20decipher%20evolutionary%20mechanisms%20underlying%20gene%20expression%20and%20complex%20traits&rft.jtitle=Cell%20genomics&rft.au=Li,%20Jinghui&rft.date=2023-10-11&rft.volume=3&rft.issue=10&rft.spage=100390&rft.pages=100390-&rft.artnum=100390&rft.issn=2666-979X&rft.eissn=2666-979X&rft_id=info:doi/10.1016/j.xgen.2023.100390&rft_dat=%3Cproquest_doaj_%3E2880820735%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-1418aa2fa2e98687cb76280a46d31a7a157c802758ef2b8bc420d42d01af8793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880820735&rft_id=info:pmid/37868039&rfr_iscdi=true