Loading…

Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel

Hydrogen is regarded as a promising energy source for the future due to its clean combustion products, remarkable efficiency and renewability. However, its characteristics of low-ignition energy, a wide flammable range from 4% to 75%, and a rapid flame speed may bring significant explosion risks. Ty...

Full description

Saved in:
Bibliographic Details
Published in:Fire (Basel, Switzerland) Switzerland), 2024-11, Vol.7 (11), p.418
Main Authors: Zhang, Jiaqing, Zhu, Xianli, Guo, Yi, Teng, Yue, Liu, Min, Li, Quan, Wang, Qiao, Wang, Changjian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen is regarded as a promising energy source for the future due to its clean combustion products, remarkable efficiency and renewability. However, its characteristics of low-ignition energy, a wide flammable range from 4% to 75%, and a rapid flame speed may bring significant explosion risks. Typically, accidental release of hydrogen into confined enclosures can result in a flammable hydrogen–air mixture with concentration gradients, possibly leading to flame acceleration (FA) and deflagration-to-detonation transition (DDT). The current study focused on the evolutions of the FA and DDT of homogenous/inhomogeneous hydrogen–air mixtures, based on the open-source computational fluid dynamics (CFD) platform OpenFOAM and the modified Weller et al.’s combustion model, taking into account the Darrieus–Landau (DL) and Rayleigh–Taylor (RT) instabilities, the turbulence and the non-unity Lewis number. Numerical simulations were carried out for both homogeneous and inhomogeneous mixtures in an enclosed channel 5.4 m in length and 0.06 m in height. The predictions demonstrate good quantitative agreement with the experimental measurements in flame-tip position, speed and pressure profiles by Boeck et al. The characteristics of flame structure, wave evolution and vortex were also discussed.
ISSN:2571-6255
2571-6255
DOI:10.3390/fire7110418