Loading…

Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics

We demonstrate ultrafast terahertz (THz) field emission from a tungsten nanotip enabled by local field enhancement. Characteristic electron spectra which result from acceleration in the THz near-field are found. Employing a dual frequency pump-probe scheme, we temporally resolve different nonlinear...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2014-12, Vol.16 (12), p.123005-9
Main Authors: Herink, G, Wimmer, L, Ropers, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate ultrafast terahertz (THz) field emission from a tungsten nanotip enabled by local field enhancement. Characteristic electron spectra which result from acceleration in the THz near-field are found. Employing a dual frequency pump-probe scheme, we temporally resolve different nonlinear photoemission processes induced by coupling near-infrared (NIR) and THz pulses. In the order of increasing THz field strength, we observe THz streaking, THz-induced barrier reduction (Schottky effect) and THz field emission. At intense NIR-excitation, the THz field emission is used as an ultrashort, local probe of hot electron dynamics in the apex. A first application of this scheme indicates a decreased carrier cooling rate in the confined tip geometry. Summarizing the results at various excitation conditions, we present a comprehensive picture of the distinct regimes in ultrafast photoemission in the near- and far-infrared.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/16/12/123005