Loading…

Remote Estimation of Nitrogen Vertical Distribution by Consideration of Maize Geometry Characteristics

The vertical leaf nitrogen (N) distribution in the crop canopy is considered to be an important adaptive response of crop growth and production. Remote sensing has been widely applied for the determination of a crop’s N status. Some studies have also focused on estimating the vertical leaf N distrib...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2018-12, Vol.10 (12), p.1995
Main Authors: Ye, Huichun, Huang, Wenjiang, Huang, Shanyu, Wu, Bin, Dong, Yingying, Cui, Bei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vertical leaf nitrogen (N) distribution in the crop canopy is considered to be an important adaptive response of crop growth and production. Remote sensing has been widely applied for the determination of a crop’s N status. Some studies have also focused on estimating the vertical leaf N distribution in the crop canopy, but these analyses have rarely considered the plant geometry and its influences on the remote estimation of the N vertical distribution in the crop canopy. In this study, field experiments with three types of maize (Zea mays L.) plant geometry (i.e., horizontal type, intermediate type, and upright type) were conducted to demonstrate how the maize plant geometry influences the remote estimation of N distribution in the vertical canopy (i.e., upper layer, middle layer, and bottom layer) at different growth stages. The results revealed that there were significant differences among the three maize plant geometry types in terms of canopy architecture, vertical distribution of leaf N density (LND, g m−2), and the LND estimates in the leaves of different layers based on canopy hyperspectral reflectance measurements. The upright leaf variety had the highest correlation between the lower-layer LND (R2 = 0.52) and the best simple ratio (SR) index (736, 812), and this index performed well for estimating the upper (R2 = 0.50) and middle (R2 = 0.60) layer LND. However, for the intermediate leaf variety, only 25% of the variation in the lower-layer LND was explained by the best SR index (721, 935). The horizontal leaf variety showed little spectral sensitivity to the lower-layer LND. In addition, the growth stages also affected the remote detection of the lower leaf N status of the canopy, because the canopy reflectance was dominated by the biomass before the 12th leaf stage and by the plant N after this stage. Therefore, we can conclude that a more accurate estimation of the N vertical distribution in the canopy is obtained by canopy hyperspectral reflectance when the maize plants have more upright leaves.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10121995