Loading…

An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term

In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2020, Vol.2020 (2020), p.1-6
Main Authors: Nie, Jianjun, Zhang, Jian, Teng, Kaimin, Li, Quanqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43
cites cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43
container_end_page 6
container_issue 2020
container_start_page 1
container_title Journal of function spaces
container_volume 2020
creator Nie, Jianjun
Zhang, Jian
Teng, Kaimin
Li, Quanqing
description In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0
doi_str_mv 10.1155/2020/6430104
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697127427</galeid><doaj_id>oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae</doaj_id><sourcerecordid>A697127427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</originalsourceid><addsrcrecordid>eNqFkV1rVDEQhg9iwVJ757UEvNRt83U-crmUtRaKYrtXvQlzkslulrNJm5xD1R_mH_CPmXpKiyA4uZjJ8Mw7CW9VvWH0hLG6PuWU09NGCsqofFEdcsHkoivx8qlWzavqOOcdpZQxxWRdH1Y3y0BW33weMRgkV5inYSQuJgLkHAMmGPwPtOTrBNkPPiAkcm226ddP68MGE1ndTTD6GMi9H7fkcwxDNDCQNab96-rAwZDx-DEfVeuPq_XZp8Xll_OLs-XlwkglxgW3TWclF4IBuNogb2Qne9EKYZXoUJlGWgloeimZQ2qtcFSwjvbclosUR9XFLGsj7PRt8ntI33UEr_80YtpoSKM3A2rR19iaDhilVlLFOqts1yvpesdUD1i03s1atyneTZhHvYtTCuX1msuatTXjkj5TGyiiPrg4JjB7n41eNqplvJW8LdTJP6hyLO69iQGdL_2_Bj7MAybFnBO6p88wqh8s1g8W60eLC_5-xrc-WLj3_6PfzjQWBh0806yrm7L9NwcmreI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451751240</pqid></control><display><type>article</type><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing</creator><contributor>Avci, Mustafa ; Mustafa Avci</contributor><creatorcontrib>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing ; Avci, Mustafa ; Mustafa Avci</creatorcontrib><description>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β&gt;0 is for some α&gt;1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0&lt;μ&lt;N. We prove that the equation admits a solution by using a constrained minimization argument.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2020/6430104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Inequality ; Schrodinger equation</subject><ispartof>Journal of function spaces, 2020, Vol.2020 (2020), p.1-6</ispartof><rights>Copyright © 2020 Quanqing Li et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Quanqing Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</citedby><cites>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</cites><orcidid>0000-0002-9146-6353 ; 0000-0002-0168-1157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2451751240/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2451751240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Avci, Mustafa</contributor><contributor>Mustafa Avci</contributor><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Teng, Kaimin</creatorcontrib><creatorcontrib>Li, Quanqing</creatorcontrib><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><title>Journal of function spaces</title><description>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β&gt;0 is for some α&gt;1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0&lt;μ&lt;N. We prove that the equation admits a solution by using a constrained minimization argument.</description><subject>Inequality</subject><subject>Schrodinger equation</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkV1rVDEQhg9iwVJ757UEvNRt83U-crmUtRaKYrtXvQlzkslulrNJm5xD1R_mH_CPmXpKiyA4uZjJ8Mw7CW9VvWH0hLG6PuWU09NGCsqofFEdcsHkoivx8qlWzavqOOcdpZQxxWRdH1Y3y0BW33weMRgkV5inYSQuJgLkHAMmGPwPtOTrBNkPPiAkcm226ddP68MGE1ndTTD6GMi9H7fkcwxDNDCQNab96-rAwZDx-DEfVeuPq_XZp8Xll_OLs-XlwkglxgW3TWclF4IBuNogb2Qne9EKYZXoUJlGWgloeimZQ2qtcFSwjvbclosUR9XFLGsj7PRt8ntI33UEr_80YtpoSKM3A2rR19iaDhilVlLFOqts1yvpesdUD1i03s1atyneTZhHvYtTCuX1msuatTXjkj5TGyiiPrg4JjB7n41eNqplvJW8LdTJP6hyLO69iQGdL_2_Bj7MAybFnBO6p88wqh8s1g8W60eLC_5-xrc-WLj3_6PfzjQWBh0806yrm7L9NwcmreI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nie, Jianjun</creator><creator>Zhang, Jian</creator><creator>Teng, Kaimin</creator><creator>Li, Quanqing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9146-6353</orcidid><orcidid>https://orcid.org/0000-0002-0168-1157</orcidid></search><sort><creationdate>2020</creationdate><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><author>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inequality</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Teng, Kaimin</creatorcontrib><creatorcontrib>Li, Quanqing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Jianjun</au><au>Zhang, Jian</au><au>Teng, Kaimin</au><au>Li, Quanqing</au><au>Avci, Mustafa</au><au>Mustafa Avci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</atitle><jtitle>Journal of function spaces</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β&gt;0 is for some α&gt;1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0&lt;μ&lt;N. We prove that the equation admits a solution by using a constrained minimization argument.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6430104</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9146-6353</orcidid><orcidid>https://orcid.org/0000-0002-0168-1157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-8896
ispartof Journal of function spaces, 2020, Vol.2020 (2020), p.1-6
issn 2314-8896
2314-8888
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Inequality
Schrodinger equation
title An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Existence%20Result%20for%20a%20Generalized%20Quasilinear%20Schr%C3%B6dinger%20Equation%20with%20Nonlocal%20Term&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Nie,%20Jianjun&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2020/6430104&rft_dat=%3Cgale_doaj_%3EA697127427%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451751240&rft_id=info:pmid/&rft_galeid=A697127427&rfr_iscdi=true