Loading…
An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term
In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−...
Saved in:
Published in: | Journal of function spaces 2020, Vol.2020 (2020), p.1-6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43 |
container_end_page | 6 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of function spaces |
container_volume | 2020 |
creator | Nie, Jianjun Zhang, Jian Teng, Kaimin Li, Quanqing |
description | In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0 |
doi_str_mv | 10.1155/2020/6430104 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697127427</galeid><doaj_id>oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae</doaj_id><sourcerecordid>A697127427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</originalsourceid><addsrcrecordid>eNqFkV1rVDEQhg9iwVJ757UEvNRt83U-crmUtRaKYrtXvQlzkslulrNJm5xD1R_mH_CPmXpKiyA4uZjJ8Mw7CW9VvWH0hLG6PuWU09NGCsqofFEdcsHkoivx8qlWzavqOOcdpZQxxWRdH1Y3y0BW33weMRgkV5inYSQuJgLkHAMmGPwPtOTrBNkPPiAkcm226ddP68MGE1ndTTD6GMi9H7fkcwxDNDCQNab96-rAwZDx-DEfVeuPq_XZp8Xll_OLs-XlwkglxgW3TWclF4IBuNogb2Qne9EKYZXoUJlGWgloeimZQ2qtcFSwjvbclosUR9XFLGsj7PRt8ntI33UEr_80YtpoSKM3A2rR19iaDhilVlLFOqts1yvpesdUD1i03s1atyneTZhHvYtTCuX1msuatTXjkj5TGyiiPrg4JjB7n41eNqplvJW8LdTJP6hyLO69iQGdL_2_Bj7MAybFnBO6p88wqh8s1g8W60eLC_5-xrc-WLj3_6PfzjQWBh0806yrm7L9NwcmreI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451751240</pqid></control><display><type>article</type><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing</creator><contributor>Avci, Mustafa ; Mustafa Avci</contributor><creatorcontrib>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing ; Avci, Mustafa ; Mustafa Avci</creatorcontrib><description>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0<μ<N. We prove that the equation admits a solution by using a constrained minimization argument.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2020/6430104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Inequality ; Schrodinger equation</subject><ispartof>Journal of function spaces, 2020, Vol.2020 (2020), p.1-6</ispartof><rights>Copyright © 2020 Quanqing Li et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Quanqing Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</citedby><cites>FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</cites><orcidid>0000-0002-9146-6353 ; 0000-0002-0168-1157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2451751240/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2451751240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Avci, Mustafa</contributor><contributor>Mustafa Avci</contributor><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Teng, Kaimin</creatorcontrib><creatorcontrib>Li, Quanqing</creatorcontrib><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><title>Journal of function spaces</title><description>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0<μ<N. We prove that the equation admits a solution by using a constrained minimization argument.</description><subject>Inequality</subject><subject>Schrodinger equation</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkV1rVDEQhg9iwVJ757UEvNRt83U-crmUtRaKYrtXvQlzkslulrNJm5xD1R_mH_CPmXpKiyA4uZjJ8Mw7CW9VvWH0hLG6PuWU09NGCsqofFEdcsHkoivx8qlWzavqOOcdpZQxxWRdH1Y3y0BW33weMRgkV5inYSQuJgLkHAMmGPwPtOTrBNkPPiAkcm226ddP68MGE1ndTTD6GMi9H7fkcwxDNDCQNab96-rAwZDx-DEfVeuPq_XZp8Xll_OLs-XlwkglxgW3TWclF4IBuNogb2Qne9EKYZXoUJlGWgloeimZQ2qtcFSwjvbclosUR9XFLGsj7PRt8ntI33UEr_80YtpoSKM3A2rR19iaDhilVlLFOqts1yvpesdUD1i03s1atyneTZhHvYtTCuX1msuatTXjkj5TGyiiPrg4JjB7n41eNqplvJW8LdTJP6hyLO69iQGdL_2_Bj7MAybFnBO6p88wqh8s1g8W60eLC_5-xrc-WLj3_6PfzjQWBh0806yrm7L9NwcmreI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nie, Jianjun</creator><creator>Zhang, Jian</creator><creator>Teng, Kaimin</creator><creator>Li, Quanqing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9146-6353</orcidid><orcidid>https://orcid.org/0000-0002-0168-1157</orcidid></search><sort><creationdate>2020</creationdate><title>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</title><author>Nie, Jianjun ; Zhang, Jian ; Teng, Kaimin ; Li, Quanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inequality</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Teng, Kaimin</creatorcontrib><creatorcontrib>Li, Quanqing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Jianjun</au><au>Zhang, Jian</au><au>Teng, Kaimin</au><au>Li, Quanqing</au><au>Avci, Mustafa</au><au>Mustafa Avci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term</atitle><jtitle>Journal of function spaces</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>In this paper, we consider the following generalized quasilinear Schrödinger equation with nonlocal term −divg2u∇u+gug′u∇u2+Vxu=λx−μ∗upup−2u,x∈ℝN, where N≥3, g:ℝ→ℝ+ is a C1 even function, g0=1, g′s≥0 is for all s≥0, lim∣s∣→+∞gs/sα−1≔β>0 is for some α>1, and α−1gs≥g′ss is for all s≥0, 2α≤p≤2αN−μ/N−2, and 0<μ<N. We prove that the equation admits a solution by using a constrained minimization argument.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6430104</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9146-6353</orcidid><orcidid>https://orcid.org/0000-0002-0168-1157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-8896 |
ispartof | Journal of function spaces, 2020, Vol.2020 (2020), p.1-6 |
issn | 2314-8896 2314-8888 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b5e7c8a100d40918d9d8b94fbf19bae |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access |
subjects | Inequality Schrodinger equation |
title | An Existence Result for a Generalized Quasilinear Schrödinger Equation with Nonlocal Term |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Existence%20Result%20for%20a%20Generalized%20Quasilinear%20Schr%C3%B6dinger%20Equation%20with%20Nonlocal%20Term&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Nie,%20Jianjun&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2020/6430104&rft_dat=%3Cgale_doaj_%3EA697127427%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-2d68d42331aaf5ce26484b3733d938e9c64d4aecb441fe0dd3f03180b2d0dd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451751240&rft_id=info:pmid/&rft_galeid=A697127427&rfr_iscdi=true |