Loading…

Real Time 3D Facial Movement Tracking Using a Monocular Camera

The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2016-07, Vol.16 (8), p.1157-1157
Main Authors: Dong, Yanchao, Wang, Yanming, Yue, Jiguang, Hu, Zhencheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203
cites cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203
container_end_page 1157
container_issue 8
container_start_page 1157
container_title Sensors (Basel, Switzerland)
container_volume 16
creator Dong, Yanchao
Wang, Yanming
Yue, Jiguang
Hu, Zhencheng
description The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.
doi_str_mv 10.3390/s16081157
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505</doaj_id><sourcerecordid>1807880905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi1ERUvgwB9AK3GBQ-j4c-1LJRQoVGqFhNKzNevMhg2762JnK_HvcZoStZx68de8evTO62HsDYePUjo4zdyA5VzXz9gJV0LNrRDw_MH5mL3MeQMgpJT2BTsWtTKy5uqEnf0g7KtlN1AlP1fnGLpyvYq3NNC4rZYJw69uXFfXebdiqYwxTD2maoEDJXzFjlrsM72-32fs-vzLcvFtfvn968Xi0-U8aBDbuYIWV1oJp1toOIWmVQTBgjGW69ZZaRowHNCi5ugQVGtE8e4akspwAXLGLvbcVcSNv0ndgOmPj9j5u4eY1h7Ttgs9edkYRcIJHRwpp1rnqPBXjbJcNhp0YZ3tWTdTM9AqlEYT9o-gjytj99Ov463XwGtZIpyx9_eAFH9PlLd-6HKgvseR4pQ9t1JrU1zXT5BCbS24O1vv_pNu4pTGkqoXHGwJRPId8MNeFVLMOVF78M3B74bBH4ahaN8-bPSg_Pf78i_dqapQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108624317</pqid></control><display><type>article</type><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</creator><creatorcontrib>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</creatorcontrib><description>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s16081157</identifier><identifier>PMID: 27463714</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D facial movement ; Algorithms ; Animation ; Cameras ; Extended Kalman filter ; eyelid ; Face - physiology ; Facial ; facial animation ; Facial Expression ; facial feature points ; Fuses ; HCI ; Humans ; Imaging, Three-Dimensional - methods ; Kalman filters ; Localization ; Mouth ; Movement ; Movement - physiology ; Real time ; Sensors ; Three dimensional models ; Three dimensional motion ; Tracking ; Tracking (position) ; Two dimensional models</subject><ispartof>Sensors (Basel, Switzerland), 2016-07, Vol.16 (8), p.1157-1157</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 by the authors; licensee MDPI, Basel, Switzerland. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</citedby><cites>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</cites><orcidid>0000-0001-6864-8354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108624317/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108624317?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Yanming</creatorcontrib><creatorcontrib>Yue, Jiguang</creatorcontrib><creatorcontrib>Hu, Zhencheng</creatorcontrib><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</description><subject>3D facial movement</subject><subject>Algorithms</subject><subject>Animation</subject><subject>Cameras</subject><subject>Extended Kalman filter</subject><subject>eyelid</subject><subject>Face - physiology</subject><subject>Facial</subject><subject>facial animation</subject><subject>Facial Expression</subject><subject>facial feature points</subject><subject>Fuses</subject><subject>HCI</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Mouth</subject><subject>Movement</subject><subject>Movement - physiology</subject><subject>Real time</subject><subject>Sensors</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Tracking</subject><subject>Tracking (position)</subject><subject>Two dimensional models</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhi1ERUvgwB9AK3GBQ-j4c-1LJRQoVGqFhNKzNevMhg2762JnK_HvcZoStZx68de8evTO62HsDYePUjo4zdyA5VzXz9gJV0LNrRDw_MH5mL3MeQMgpJT2BTsWtTKy5uqEnf0g7KtlN1AlP1fnGLpyvYq3NNC4rZYJw69uXFfXebdiqYwxTD2maoEDJXzFjlrsM72-32fs-vzLcvFtfvn968Xi0-U8aBDbuYIWV1oJp1toOIWmVQTBgjGW69ZZaRowHNCi5ugQVGtE8e4akspwAXLGLvbcVcSNv0ndgOmPj9j5u4eY1h7Ttgs9edkYRcIJHRwpp1rnqPBXjbJcNhp0YZ3tWTdTM9AqlEYT9o-gjytj99Ov463XwGtZIpyx9_eAFH9PlLd-6HKgvseR4pQ9t1JrU1zXT5BCbS24O1vv_pNu4pTGkqoXHGwJRPId8MNeFVLMOVF78M3B74bBH4ahaN8-bPSg_Pf78i_dqapQ</recordid><startdate>20160725</startdate><enddate>20160725</enddate><creator>Dong, Yanchao</creator><creator>Wang, Yanming</creator><creator>Yue, Jiguang</creator><creator>Hu, Zhencheng</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid></search><sort><creationdate>20160725</creationdate><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><author>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D facial movement</topic><topic>Algorithms</topic><topic>Animation</topic><topic>Cameras</topic><topic>Extended Kalman filter</topic><topic>eyelid</topic><topic>Face - physiology</topic><topic>Facial</topic><topic>facial animation</topic><topic>Facial Expression</topic><topic>facial feature points</topic><topic>Fuses</topic><topic>HCI</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Mouth</topic><topic>Movement</topic><topic>Movement - physiology</topic><topic>Real time</topic><topic>Sensors</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Tracking</topic><topic>Tracking (position)</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Yanming</creatorcontrib><creatorcontrib>Yue, Jiguang</creatorcontrib><creatorcontrib>Hu, Zhencheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yanchao</au><au>Wang, Yanming</au><au>Yue, Jiguang</au><au>Hu, Zhencheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time 3D Facial Movement Tracking Using a Monocular Camera</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2016-07-25</date><risdate>2016</risdate><volume>16</volume><issue>8</issue><spage>1157</spage><epage>1157</epage><pages>1157-1157</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>27463714</pmid><doi>10.3390/s16081157</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2016-07, Vol.16 (8), p.1157-1157
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505
source Open Access: PubMed Central; Publicly Available Content Database
subjects 3D facial movement
Algorithms
Animation
Cameras
Extended Kalman filter
eyelid
Face - physiology
Facial
facial animation
Facial Expression
facial feature points
Fuses
HCI
Humans
Imaging, Three-Dimensional - methods
Kalman filters
Localization
Mouth
Movement
Movement - physiology
Real time
Sensors
Three dimensional models
Three dimensional motion
Tracking
Tracking (position)
Two dimensional models
title Real Time 3D Facial Movement Tracking Using a Monocular Camera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%203D%20Facial%20Movement%20Tracking%20Using%20a%20Monocular%20Camera&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Dong,%20Yanchao&rft.date=2016-07-25&rft.volume=16&rft.issue=8&rft.spage=1157&rft.epage=1157&rft.pages=1157-1157&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s16081157&rft_dat=%3Cproquest_doaj_%3E1807880905%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108624317&rft_id=info:pmid/27463714&rfr_iscdi=true