Loading…
Real Time 3D Facial Movement Tracking Using a Monocular Camera
The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2016-07, Vol.16 (8), p.1157-1157 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203 |
container_end_page | 1157 |
container_issue | 8 |
container_start_page | 1157 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 16 |
creator | Dong, Yanchao Wang, Yanming Yue, Jiguang Hu, Zhencheng |
description | The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. |
doi_str_mv | 10.3390/s16081157 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505</doaj_id><sourcerecordid>1807880905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi1ERUvgwB9AK3GBQ-j4c-1LJRQoVGqFhNKzNevMhg2762JnK_HvcZoStZx68de8evTO62HsDYePUjo4zdyA5VzXz9gJV0LNrRDw_MH5mL3MeQMgpJT2BTsWtTKy5uqEnf0g7KtlN1AlP1fnGLpyvYq3NNC4rZYJw69uXFfXebdiqYwxTD2maoEDJXzFjlrsM72-32fs-vzLcvFtfvn968Xi0-U8aBDbuYIWV1oJp1toOIWmVQTBgjGW69ZZaRowHNCi5ugQVGtE8e4akspwAXLGLvbcVcSNv0ndgOmPj9j5u4eY1h7Ttgs9edkYRcIJHRwpp1rnqPBXjbJcNhp0YZ3tWTdTM9AqlEYT9o-gjytj99Ov463XwGtZIpyx9_eAFH9PlLd-6HKgvseR4pQ9t1JrU1zXT5BCbS24O1vv_pNu4pTGkqoXHGwJRPId8MNeFVLMOVF78M3B74bBH4ahaN8-bPSg_Pf78i_dqapQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108624317</pqid></control><display><type>article</type><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</creator><creatorcontrib>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</creatorcontrib><description>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s16081157</identifier><identifier>PMID: 27463714</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D facial movement ; Algorithms ; Animation ; Cameras ; Extended Kalman filter ; eyelid ; Face - physiology ; Facial ; facial animation ; Facial Expression ; facial feature points ; Fuses ; HCI ; Humans ; Imaging, Three-Dimensional - methods ; Kalman filters ; Localization ; Mouth ; Movement ; Movement - physiology ; Real time ; Sensors ; Three dimensional models ; Three dimensional motion ; Tracking ; Tracking (position) ; Two dimensional models</subject><ispartof>Sensors (Basel, Switzerland), 2016-07, Vol.16 (8), p.1157-1157</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 by the authors; licensee MDPI, Basel, Switzerland. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</citedby><cites>FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</cites><orcidid>0000-0001-6864-8354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108624317/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108624317?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Yanming</creatorcontrib><creatorcontrib>Yue, Jiguang</creatorcontrib><creatorcontrib>Hu, Zhencheng</creatorcontrib><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</description><subject>3D facial movement</subject><subject>Algorithms</subject><subject>Animation</subject><subject>Cameras</subject><subject>Extended Kalman filter</subject><subject>eyelid</subject><subject>Face - physiology</subject><subject>Facial</subject><subject>facial animation</subject><subject>Facial Expression</subject><subject>facial feature points</subject><subject>Fuses</subject><subject>HCI</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Mouth</subject><subject>Movement</subject><subject>Movement - physiology</subject><subject>Real time</subject><subject>Sensors</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Tracking</subject><subject>Tracking (position)</subject><subject>Two dimensional models</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhi1ERUvgwB9AK3GBQ-j4c-1LJRQoVGqFhNKzNevMhg2762JnK_HvcZoStZx68de8evTO62HsDYePUjo4zdyA5VzXz9gJV0LNrRDw_MH5mL3MeQMgpJT2BTsWtTKy5uqEnf0g7KtlN1AlP1fnGLpyvYq3NNC4rZYJw69uXFfXebdiqYwxTD2maoEDJXzFjlrsM72-32fs-vzLcvFtfvn968Xi0-U8aBDbuYIWV1oJp1toOIWmVQTBgjGW69ZZaRowHNCi5ugQVGtE8e4akspwAXLGLvbcVcSNv0ndgOmPj9j5u4eY1h7Ttgs9edkYRcIJHRwpp1rnqPBXjbJcNhp0YZ3tWTdTM9AqlEYT9o-gjytj99Ov463XwGtZIpyx9_eAFH9PlLd-6HKgvseR4pQ9t1JrU1zXT5BCbS24O1vv_pNu4pTGkqoXHGwJRPId8MNeFVLMOVF78M3B74bBH4ahaN8-bPSg_Pf78i_dqapQ</recordid><startdate>20160725</startdate><enddate>20160725</enddate><creator>Dong, Yanchao</creator><creator>Wang, Yanming</creator><creator>Yue, Jiguang</creator><creator>Hu, Zhencheng</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid></search><sort><creationdate>20160725</creationdate><title>Real Time 3D Facial Movement Tracking Using a Monocular Camera</title><author>Dong, Yanchao ; Wang, Yanming ; Yue, Jiguang ; Hu, Zhencheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D facial movement</topic><topic>Algorithms</topic><topic>Animation</topic><topic>Cameras</topic><topic>Extended Kalman filter</topic><topic>eyelid</topic><topic>Face - physiology</topic><topic>Facial</topic><topic>facial animation</topic><topic>Facial Expression</topic><topic>facial feature points</topic><topic>Fuses</topic><topic>HCI</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Mouth</topic><topic>Movement</topic><topic>Movement - physiology</topic><topic>Real time</topic><topic>Sensors</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Tracking</topic><topic>Tracking (position)</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yanchao</creatorcontrib><creatorcontrib>Wang, Yanming</creatorcontrib><creatorcontrib>Yue, Jiguang</creatorcontrib><creatorcontrib>Hu, Zhencheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yanchao</au><au>Wang, Yanming</au><au>Yue, Jiguang</au><au>Hu, Zhencheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time 3D Facial Movement Tracking Using a Monocular Camera</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2016-07-25</date><risdate>2016</risdate><volume>16</volume><issue>8</issue><spage>1157</spage><epage>1157</epage><pages>1157-1157</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>27463714</pmid><doi>10.3390/s16081157</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6864-8354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2016-07, Vol.16 (8), p.1157-1157 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b64e2925c9e494f99e836db4813b505 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | 3D facial movement Algorithms Animation Cameras Extended Kalman filter eyelid Face - physiology Facial facial animation Facial Expression facial feature points Fuses HCI Humans Imaging, Three-Dimensional - methods Kalman filters Localization Mouth Movement Movement - physiology Real time Sensors Three dimensional models Three dimensional motion Tracking Tracking (position) Two dimensional models |
title | Real Time 3D Facial Movement Tracking Using a Monocular Camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%203D%20Facial%20Movement%20Tracking%20Using%20a%20Monocular%20Camera&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Dong,%20Yanchao&rft.date=2016-07-25&rft.volume=16&rft.issue=8&rft.spage=1157&rft.epage=1157&rft.pages=1157-1157&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s16081157&rft_dat=%3Cproquest_doaj_%3E1807880905%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-40fad54295f0b1ecbf4e0c8066815f9836b0610a8a51a9a04f624249be3461203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108624317&rft_id=info:pmid/27463714&rfr_iscdi=true |