Loading…

Retinal blood vessels segmentation using classical edge detection filters and the neural network

Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neura...

Full description

Saved in:
Bibliographic Details
Published in:Informatics in medicine unlocked 2021, Vol.23, p.100521, Article 100521
Main Authors: Saha Tchinda, Beaudelaire, Tchiotsop, Daniel, Noubom, Michel, Louis-Dorr, Valerie, Wolf, Didier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453
cites cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453
container_end_page
container_issue
container_start_page 100521
container_title Informatics in medicine unlocked
container_volume 23
creator Saha Tchinda, Beaudelaire
Tchiotsop, Daniel
Noubom, Michel
Louis-Dorr, Valerie
Wolf, Didier
description Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.
doi_str_mv 10.1016/j.imu.2021.100521
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352914821000113</els_id><doaj_id>oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4</doaj_id><sourcerecordid>S2352914821000113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhhdRsNQ-gHd5gdZMDpstXknxUCgIotcxh9maut2VZFvx7U27Il55Ncf_n-ErikugM6BQXm1mYbubMcog11QyOClGjEs2nYOoTv_k58UkpQ2lFFTJpZKj4vUJ-9Cahtim6zzZY0rYJJJwvcW2N33oWrJLoV0T15iUgsur6NdIPPbojuM6ND3GREzrSf-GpMVdzFst9p9dfL8ozmrTJJz8xHHxcnf7vHiYrh7vl4ub1dRxBjB1QnAnK8O4oUJUnpYAjAlvSgFWKc7nlmLFqLIAsqy9QQ_MSQ-qEhUXko-L5eDrO7PRHzFsTfzSnQn62OjiWpvYB9eg5lZZZiqByql8wZpaMVo57qz1XnqRvWDwcrFLKWL96wdUH4jrjc7E9YG4HohnzfWgyfhwHzDq5AK2Dn2IGVT-Ivyj_gZQnolX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><source>ScienceDirect</source><creator>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</creator><creatorcontrib>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</creatorcontrib><description>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</description><identifier>ISSN: 2352-9148</identifier><identifier>EISSN: 2352-9148</identifier><identifier>DOI: 10.1016/j.imu.2021.100521</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blood vessels segmentation ; Edge detection filters ; Neural network ; Retinal images</subject><ispartof>Informatics in medicine unlocked, 2021, Vol.23, p.100521, Article 100521</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</citedby><cites>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352914821000113$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,4024,27923,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Saha Tchinda, Beaudelaire</creatorcontrib><creatorcontrib>Tchiotsop, Daniel</creatorcontrib><creatorcontrib>Noubom, Michel</creatorcontrib><creatorcontrib>Louis-Dorr, Valerie</creatorcontrib><creatorcontrib>Wolf, Didier</creatorcontrib><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><title>Informatics in medicine unlocked</title><description>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</description><subject>Blood vessels segmentation</subject><subject>Edge detection filters</subject><subject>Neural network</subject><subject>Retinal images</subject><issn>2352-9148</issn><issn>2352-9148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKAzEQhhdRsNQ-gHd5gdZMDpstXknxUCgIotcxh9maut2VZFvx7U27Il55Ncf_n-ErikugM6BQXm1mYbubMcog11QyOClGjEs2nYOoTv_k58UkpQ2lFFTJpZKj4vUJ-9Cahtim6zzZY0rYJJJwvcW2N33oWrJLoV0T15iUgsur6NdIPPbojuM6ND3GREzrSf-GpMVdzFst9p9dfL8ozmrTJJz8xHHxcnf7vHiYrh7vl4ub1dRxBjB1QnAnK8O4oUJUnpYAjAlvSgFWKc7nlmLFqLIAsqy9QQ_MSQ-qEhUXko-L5eDrO7PRHzFsTfzSnQn62OjiWpvYB9eg5lZZZiqByql8wZpaMVo57qz1XnqRvWDwcrFLKWL96wdUH4jrjc7E9YG4HohnzfWgyfhwHzDq5AK2Dn2IGVT-Ivyj_gZQnolX</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saha Tchinda, Beaudelaire</creator><creator>Tchiotsop, Daniel</creator><creator>Noubom, Michel</creator><creator>Louis-Dorr, Valerie</creator><creator>Wolf, Didier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><author>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels segmentation</topic><topic>Edge detection filters</topic><topic>Neural network</topic><topic>Retinal images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha Tchinda, Beaudelaire</creatorcontrib><creatorcontrib>Tchiotsop, Daniel</creatorcontrib><creatorcontrib>Noubom, Michel</creatorcontrib><creatorcontrib>Louis-Dorr, Valerie</creatorcontrib><creatorcontrib>Wolf, Didier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Informatics in medicine unlocked</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha Tchinda, Beaudelaire</au><au>Tchiotsop, Daniel</au><au>Noubom, Michel</au><au>Louis-Dorr, Valerie</au><au>Wolf, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal blood vessels segmentation using classical edge detection filters and the neural network</atitle><jtitle>Informatics in medicine unlocked</jtitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>100521</spage><pages>100521-</pages><artnum>100521</artnum><issn>2352-9148</issn><eissn>2352-9148</eissn><abstract>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.imu.2021.100521</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-9148
ispartof Informatics in medicine unlocked, 2021, Vol.23, p.100521, Article 100521
issn 2352-9148
2352-9148
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4
source ScienceDirect
subjects Blood vessels segmentation
Edge detection filters
Neural network
Retinal images
title Retinal blood vessels segmentation using classical edge detection filters and the neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20blood%20vessels%20segmentation%20using%20classical%20edge%20detection%20filters%20and%20the%20neural%20network&rft.jtitle=Informatics%20in%20medicine%20unlocked&rft.au=Saha%20Tchinda,%20Beaudelaire&rft.date=2021&rft.volume=23&rft.spage=100521&rft.pages=100521-&rft.artnum=100521&rft.issn=2352-9148&rft.eissn=2352-9148&rft_id=info:doi/10.1016/j.imu.2021.100521&rft_dat=%3Celsevier_doaj_%3ES2352914821000113%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true