Loading…
Retinal blood vessels segmentation using classical edge detection filters and the neural network
Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neura...
Saved in:
Published in: | Informatics in medicine unlocked 2021, Vol.23, p.100521, Article 100521 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453 |
---|---|
cites | cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453 |
container_end_page | |
container_issue | |
container_start_page | 100521 |
container_title | Informatics in medicine unlocked |
container_volume | 23 |
creator | Saha Tchinda, Beaudelaire Tchiotsop, Daniel Noubom, Michel Louis-Dorr, Valerie Wolf, Didier |
description | Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis. |
doi_str_mv | 10.1016/j.imu.2021.100521 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352914821000113</els_id><doaj_id>oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4</doaj_id><sourcerecordid>S2352914821000113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhhdRsNQ-gHd5gdZMDpstXknxUCgIotcxh9maut2VZFvx7U27Il55Ncf_n-ErikugM6BQXm1mYbubMcog11QyOClGjEs2nYOoTv_k58UkpQ2lFFTJpZKj4vUJ-9Cahtim6zzZY0rYJJJwvcW2N33oWrJLoV0T15iUgsur6NdIPPbojuM6ND3GREzrSf-GpMVdzFst9p9dfL8ozmrTJJz8xHHxcnf7vHiYrh7vl4ub1dRxBjB1QnAnK8O4oUJUnpYAjAlvSgFWKc7nlmLFqLIAsqy9QQ_MSQ-qEhUXko-L5eDrO7PRHzFsTfzSnQn62OjiWpvYB9eg5lZZZiqByql8wZpaMVo57qz1XnqRvWDwcrFLKWL96wdUH4jrjc7E9YG4HohnzfWgyfhwHzDq5AK2Dn2IGVT-Ivyj_gZQnolX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><source>ScienceDirect</source><creator>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</creator><creatorcontrib>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</creatorcontrib><description>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</description><identifier>ISSN: 2352-9148</identifier><identifier>EISSN: 2352-9148</identifier><identifier>DOI: 10.1016/j.imu.2021.100521</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blood vessels segmentation ; Edge detection filters ; Neural network ; Retinal images</subject><ispartof>Informatics in medicine unlocked, 2021, Vol.23, p.100521, Article 100521</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</citedby><cites>FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352914821000113$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,4024,27923,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Saha Tchinda, Beaudelaire</creatorcontrib><creatorcontrib>Tchiotsop, Daniel</creatorcontrib><creatorcontrib>Noubom, Michel</creatorcontrib><creatorcontrib>Louis-Dorr, Valerie</creatorcontrib><creatorcontrib>Wolf, Didier</creatorcontrib><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><title>Informatics in medicine unlocked</title><description>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</description><subject>Blood vessels segmentation</subject><subject>Edge detection filters</subject><subject>Neural network</subject><subject>Retinal images</subject><issn>2352-9148</issn><issn>2352-9148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKAzEQhhdRsNQ-gHd5gdZMDpstXknxUCgIotcxh9maut2VZFvx7U27Il55Ncf_n-ErikugM6BQXm1mYbubMcog11QyOClGjEs2nYOoTv_k58UkpQ2lFFTJpZKj4vUJ-9Cahtim6zzZY0rYJJJwvcW2N33oWrJLoV0T15iUgsur6NdIPPbojuM6ND3GREzrSf-GpMVdzFst9p9dfL8ozmrTJJz8xHHxcnf7vHiYrh7vl4ub1dRxBjB1QnAnK8O4oUJUnpYAjAlvSgFWKc7nlmLFqLIAsqy9QQ_MSQ-qEhUXko-L5eDrO7PRHzFsTfzSnQn62OjiWpvYB9eg5lZZZiqByql8wZpaMVo57qz1XnqRvWDwcrFLKWL96wdUH4jrjc7E9YG4HohnzfWgyfhwHzDq5AK2Dn2IGVT-Ivyj_gZQnolX</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saha Tchinda, Beaudelaire</creator><creator>Tchiotsop, Daniel</creator><creator>Noubom, Michel</creator><creator>Louis-Dorr, Valerie</creator><creator>Wolf, Didier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Retinal blood vessels segmentation using classical edge detection filters and the neural network</title><author>Saha Tchinda, Beaudelaire ; Tchiotsop, Daniel ; Noubom, Michel ; Louis-Dorr, Valerie ; Wolf, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels segmentation</topic><topic>Edge detection filters</topic><topic>Neural network</topic><topic>Retinal images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha Tchinda, Beaudelaire</creatorcontrib><creatorcontrib>Tchiotsop, Daniel</creatorcontrib><creatorcontrib>Noubom, Michel</creatorcontrib><creatorcontrib>Louis-Dorr, Valerie</creatorcontrib><creatorcontrib>Wolf, Didier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Informatics in medicine unlocked</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha Tchinda, Beaudelaire</au><au>Tchiotsop, Daniel</au><au>Noubom, Michel</au><au>Louis-Dorr, Valerie</au><au>Wolf, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal blood vessels segmentation using classical edge detection filters and the neural network</atitle><jtitle>Informatics in medicine unlocked</jtitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>100521</spage><pages>100521-</pages><artnum>100521</artnum><issn>2352-9148</issn><eissn>2352-9148</eissn><abstract>Retinal blood vessels analysis is of interest for medical screening, especially in the diagnosis of diabetic retinopathy. In this paper, we propose a new method for the segmentation of blood vessels in retinal photographs. This method is based on classical edge detection filters and artificial neural networks. Firstly, edge detection filters are applied to extract the features vector. The resulting features are used to train an artificial neural network in order to recognize each pixel as belonging to blood vessels or not. The obtained algorithm is evaluated with the publicly available DRIVE, CHASE and STARE datasets, containing retinal images frequently used for this goal. The performance of the proposed system is calculated in terms of detection accuracy, sensitivity, specificity, and the area under the ROC curve. Our model is compared to other vessel segmentation models with encouraging results obtained. The proposed algorithm is a suitable tool for automated retinal image analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.imu.2021.100521</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-9148 |
ispartof | Informatics in medicine unlocked, 2021, Vol.23, p.100521, Article 100521 |
issn | 2352-9148 2352-9148 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b7b2a84e7c74dabaf7208c3cbbdd5d4 |
source | ScienceDirect |
subjects | Blood vessels segmentation Edge detection filters Neural network Retinal images |
title | Retinal blood vessels segmentation using classical edge detection filters and the neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20blood%20vessels%20segmentation%20using%20classical%20edge%20detection%20filters%20and%20the%20neural%20network&rft.jtitle=Informatics%20in%20medicine%20unlocked&rft.au=Saha%20Tchinda,%20Beaudelaire&rft.date=2021&rft.volume=23&rft.spage=100521&rft.pages=100521-&rft.artnum=100521&rft.issn=2352-9148&rft.eissn=2352-9148&rft_id=info:doi/10.1016/j.imu.2021.100521&rft_dat=%3Celsevier_doaj_%3ES2352914821000113%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3211-c443c58a23a0448d0611224da641b77339b0e8207b1156fdaed12c5d178483453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |