Loading…

Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning

This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information a...

Full description

Saved in:
Bibliographic Details
Published in:Electronic research archive 2023, Vol.31 (3), p.1365-1386
Main Authors: Hui, Xianfei, Sun, Baiqing, SenGupta, Indranil, Zhou, Yan, Jiang, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13
cites cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13
container_end_page 1386
container_issue 3
container_start_page 1365
container_title Electronic research archive
container_volume 31
creator Hui, Xianfei
Sun, Baiqing
SenGupta, Indranil
Zhou, Yan
Jiang, Hui
description This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.
doi_str_mv 10.3934/era.2023070
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</doaj_id><sourcerecordid>oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</originalsourceid><addsrcrecordid>eNpN0U1Lw0AQBuAgCpbak39g75I6yWw2m6MUPwoFD9VzmOxumi3pbt2kxfx7U1vE0wwD7wPDG0X3CcyxQP5oAs1TSBFyuIomqZAyTrKCX__bb6NZ120BIJUJABeT6LDuvWqo661iR99Sb1vbD2zntWmt2zBfs8ZumrgO5utgnBrYYr1kCMCs0-abkdNMD452Y3572O3ZPhhtVW-9YzrYo3GsGjlSjXWGtYaCG9m76KamtjOzy5xGny_PH4u3ePX-ulw8rWKFKPqY5xmgqZG4gTzjPAVVcIFKCKip4jmh4rXkaISsMgKCjFOFGrUWuUSV4DRanl3taVvug91RGEpPtvw9-LApKYyvt6bEKq-L4iQmkmdKyBwzJVOuQOisyNVoPZwtFXzXBVP_eQmUpwLKsYDyUgD-AKuEeLs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><source>Alma/SFX Local Collection</source><creator>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</creator><creatorcontrib>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</creatorcontrib><description>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2023070</identifier><language>eng</language><publisher>AIMS Press</publisher><subject>high-frequency data ; jump ; lévy process ; machine learning and deep learning ; stochastic volatility modeling</subject><ispartof>Electronic research archive, 2023, Vol.31 (3), p.1365-1386</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</citedby><cites>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hui, Xianfei</creatorcontrib><creatorcontrib>Sun, Baiqing</creatorcontrib><creatorcontrib>SenGupta, Indranil</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><title>Electronic research archive</title><description>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</description><subject>high-frequency data</subject><subject>jump</subject><subject>lévy process</subject><subject>machine learning and deep learning</subject><subject>stochastic volatility modeling</subject><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0U1Lw0AQBuAgCpbak39g75I6yWw2m6MUPwoFD9VzmOxumi3pbt2kxfx7U1vE0wwD7wPDG0X3CcyxQP5oAs1TSBFyuIomqZAyTrKCX__bb6NZ120BIJUJABeT6LDuvWqo661iR99Sb1vbD2zntWmt2zBfs8ZumrgO5utgnBrYYr1kCMCs0-abkdNMD452Y3572O3ZPhhtVW-9YzrYo3GsGjlSjXWGtYaCG9m76KamtjOzy5xGny_PH4u3ePX-ulw8rWKFKPqY5xmgqZG4gTzjPAVVcIFKCKip4jmh4rXkaISsMgKCjFOFGrUWuUSV4DRanl3taVvug91RGEpPtvw9-LApKYyvt6bEKq-L4iQmkmdKyBwzJVOuQOisyNVoPZwtFXzXBVP_eQmUpwLKsYDyUgD-AKuEeLs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hui, Xianfei</creator><creator>Sun, Baiqing</creator><creator>SenGupta, Indranil</creator><creator>Zhou, Yan</creator><creator>Jiang, Hui</creator><general>AIMS Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2023</creationdate><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><author>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>high-frequency data</topic><topic>jump</topic><topic>lévy process</topic><topic>machine learning and deep learning</topic><topic>stochastic volatility modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Xianfei</creatorcontrib><creatorcontrib>Sun, Baiqing</creatorcontrib><creatorcontrib>SenGupta, Indranil</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Electronic research archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Xianfei</au><au>Sun, Baiqing</au><au>SenGupta, Indranil</au><au>Zhou, Yan</au><au>Jiang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</atitle><jtitle>Electronic research archive</jtitle><date>2023</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>1365</spage><epage>1386</epage><pages>1365-1386</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</abstract><pub>AIMS Press</pub><doi>10.3934/era.2023070</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-1594
ispartof Electronic research archive, 2023, Vol.31 (3), p.1365-1386
issn 2688-1594
2688-1594
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c
source Alma/SFX Local Collection
subjects high-frequency data
jump
lévy process
machine learning and deep learning
stochastic volatility modeling
title Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20volatility%20modeling%20of%20high-frequency%20CSI%20300%20index%20and%20dynamic%20jump%20prediction%20driven%20by%20machine%20learning&rft.jtitle=Electronic%20research%20archive&rft.au=Hui,%20Xianfei&rft.date=2023&rft.volume=31&rft.issue=3&rft.spage=1365&rft.epage=1386&rft.pages=1365-1386&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2023070&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true