Loading…
Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning
This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information a...
Saved in:
Published in: | Electronic research archive 2023, Vol.31 (3), p.1365-1386 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13 |
container_end_page | 1386 |
container_issue | 3 |
container_start_page | 1365 |
container_title | Electronic research archive |
container_volume | 31 |
creator | Hui, Xianfei Sun, Baiqing SenGupta, Indranil Zhou, Yan Jiang, Hui |
description | This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility. |
doi_str_mv | 10.3934/era.2023070 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</doaj_id><sourcerecordid>oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</originalsourceid><addsrcrecordid>eNpN0U1Lw0AQBuAgCpbak39g75I6yWw2m6MUPwoFD9VzmOxumi3pbt2kxfx7U1vE0wwD7wPDG0X3CcyxQP5oAs1TSBFyuIomqZAyTrKCX__bb6NZ120BIJUJABeT6LDuvWqo661iR99Sb1vbD2zntWmt2zBfs8ZumrgO5utgnBrYYr1kCMCs0-abkdNMD452Y3572O3ZPhhtVW-9YzrYo3GsGjlSjXWGtYaCG9m76KamtjOzy5xGny_PH4u3ePX-ulw8rWKFKPqY5xmgqZG4gTzjPAVVcIFKCKip4jmh4rXkaISsMgKCjFOFGrUWuUSV4DRanl3taVvug91RGEpPtvw9-LApKYyvt6bEKq-L4iQmkmdKyBwzJVOuQOisyNVoPZwtFXzXBVP_eQmUpwLKsYDyUgD-AKuEeLs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><source>Alma/SFX Local Collection</source><creator>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</creator><creatorcontrib>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</creatorcontrib><description>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2023070</identifier><language>eng</language><publisher>AIMS Press</publisher><subject>high-frequency data ; jump ; lévy process ; machine learning and deep learning ; stochastic volatility modeling</subject><ispartof>Electronic research archive, 2023, Vol.31 (3), p.1365-1386</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</citedby><cites>FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hui, Xianfei</creatorcontrib><creatorcontrib>Sun, Baiqing</creatorcontrib><creatorcontrib>SenGupta, Indranil</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><title>Electronic research archive</title><description>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</description><subject>high-frequency data</subject><subject>jump</subject><subject>lévy process</subject><subject>machine learning and deep learning</subject><subject>stochastic volatility modeling</subject><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0U1Lw0AQBuAgCpbak39g75I6yWw2m6MUPwoFD9VzmOxumi3pbt2kxfx7U1vE0wwD7wPDG0X3CcyxQP5oAs1TSBFyuIomqZAyTrKCX__bb6NZ120BIJUJABeT6LDuvWqo661iR99Sb1vbD2zntWmt2zBfs8ZumrgO5utgnBrYYr1kCMCs0-abkdNMD452Y3572O3ZPhhtVW-9YzrYo3GsGjlSjXWGtYaCG9m76KamtjOzy5xGny_PH4u3ePX-ulw8rWKFKPqY5xmgqZG4gTzjPAVVcIFKCKip4jmh4rXkaISsMgKCjFOFGrUWuUSV4DRanl3taVvug91RGEpPtvw9-LApKYyvt6bEKq-L4iQmkmdKyBwzJVOuQOisyNVoPZwtFXzXBVP_eQmUpwLKsYDyUgD-AKuEeLs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hui, Xianfei</creator><creator>Sun, Baiqing</creator><creator>SenGupta, Indranil</creator><creator>Zhou, Yan</creator><creator>Jiang, Hui</creator><general>AIMS Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2023</creationdate><title>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</title><author>Hui, Xianfei ; Sun, Baiqing ; SenGupta, Indranil ; Zhou, Yan ; Jiang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>high-frequency data</topic><topic>jump</topic><topic>lévy process</topic><topic>machine learning and deep learning</topic><topic>stochastic volatility modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Xianfei</creatorcontrib><creatorcontrib>Sun, Baiqing</creatorcontrib><creatorcontrib>SenGupta, Indranil</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Electronic research archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Xianfei</au><au>Sun, Baiqing</au><au>SenGupta, Indranil</au><au>Zhou, Yan</au><au>Jiang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning</atitle><jtitle>Electronic research archive</jtitle><date>2023</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>1365</spage><epage>1386</epage><pages>1365-1386</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>This paper models stochastic process of price time series of $ CSI $ $ 300 $ index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information and market microstructure noises are considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on high-frequency realized volatility.</abstract><pub>AIMS Press</pub><doi>10.3934/era.2023070</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-1594 |
ispartof | Electronic research archive, 2023, Vol.31 (3), p.1365-1386 |
issn | 2688-1594 2688-1594 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c |
source | Alma/SFX Local Collection |
subjects | high-frequency data jump lévy process machine learning and deep learning stochastic volatility modeling |
title | Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20volatility%20modeling%20of%20high-frequency%20CSI%20300%20index%20and%20dynamic%20jump%20prediction%20driven%20by%20machine%20learning&rft.jtitle=Electronic%20research%20archive&rft.au=Hui,%20Xianfei&rft.date=2023&rft.volume=31&rft.issue=3&rft.spage=1365&rft.epage=1386&rft.pages=1365-1386&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2023070&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3b7f99a3c41845c68735c824c06d597c%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-47503ef3a4e0754420c9463c660fab47a3c4f843e68b5a0a054ab3d3dd6783c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |