Loading…

Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment

This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and es...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2019-01, Vol.2019 (2019), p.1-15
Main Authors: Li, Yajie, Meng, Xinzhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3
cites cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3
container_end_page 15
container_issue 2019
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2019
creator Li, Yajie
Meng, Xinzhu
description This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.
doi_str_mv 10.1155/2019/5498569
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623928115</galeid><doaj_id>oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99</doaj_id><sourcerecordid>A623928115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxQdRsFbffJaAjzptPiaZ5LFsa7tQP9AKvoWbmUw3y0yyTTJdiv98s07RRwkhl8PvHu7Nqaq3BJ8QwvkpxUSd8kZJLtSz6ogI3NZStr-elxpTUWNKxcvqVUpbjCmWih5Vv88fPEyuSygMCDxaT7t5TO7eoh85dBtI2XXoS_Aw5-DDFOaEVhs7hZQho8-htyPau7xBN_uAzt0w2Gh9Rpcx7Iv4HbJNyHkE6FsYxznbHl34exeDnwr2unoxwJjsm6f3uPr56eJmdVVff71cr86u664RPNdKGMaajopWqMPtWtI1CnMscduYxghhW2Oasjf0krQd8J4bgyVtcW9Yb9lxtV58-wBbvYtugvigAzj9RwjxVkMse45WMyM5SMGNKn6CUYNBEWuBw0CwVap4vV-8djHczTZlvQ1z9GV8TYlUjWSyJYU6WahbKKbODyFH6Mrpbfnr4O3gin4mKFNUluhKw8eloYshpWiHv2MSrA_Z6kO2-inbgn9Y8I3zPezd_-h3C20LYwf4R5NGNIyzRyjQrSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189483871</pqid></control><display><type>article</type><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Li, Yajie ; Meng, Xinzhu</creator><contributor>Peterson, Allan C. ; Allan C Peterson</contributor><creatorcontrib>Li, Yajie ; Meng, Xinzhu ; Peterson, Allan C. ; Allan C Peterson</creatorcontrib><description>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2019/5498569</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Applied mathematics ; Computer simulation ; Differential equations ; Endangered &amp; extinct species ; Endangered species ; Extinction ; Growth ; Liapunov functions ; Mathematical functions ; Mathematical models ; Microorganisms ; Noise ; Numerical analysis ; Pollution ; Population ; Statistical mechanics ; Survival analysis</subject><ispartof>Discrete dynamics in nature and society, 2019-01, Vol.2019 (2019), p.1-15</ispartof><rights>Copyright © 2019 Yajie Li and Xinzhu Meng.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Yajie Li and Xinzhu Meng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</citedby><cites>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</cites><orcidid>0000-0002-6553-9686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2189483871/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2189483871?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Peterson, Allan C.</contributor><contributor>Allan C Peterson</contributor><creatorcontrib>Li, Yajie</creatorcontrib><creatorcontrib>Meng, Xinzhu</creatorcontrib><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><title>Discrete dynamics in nature and society</title><description>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Endangered &amp; extinct species</subject><subject>Endangered species</subject><subject>Extinction</subject><subject>Growth</subject><subject>Liapunov functions</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Pollution</subject><subject>Population</subject><subject>Statistical mechanics</subject><subject>Survival analysis</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkd1rFDEUxQdRsFbffJaAjzptPiaZ5LFsa7tQP9AKvoWbmUw3y0yyTTJdiv98s07RRwkhl8PvHu7Nqaq3BJ8QwvkpxUSd8kZJLtSz6ogI3NZStr-elxpTUWNKxcvqVUpbjCmWih5Vv88fPEyuSygMCDxaT7t5TO7eoh85dBtI2XXoS_Aw5-DDFOaEVhs7hZQho8-htyPau7xBN_uAzt0w2Gh9Rpcx7Iv4HbJNyHkE6FsYxznbHl34exeDnwr2unoxwJjsm6f3uPr56eJmdVVff71cr86u664RPNdKGMaajopWqMPtWtI1CnMscduYxghhW2Oasjf0krQd8J4bgyVtcW9Yb9lxtV58-wBbvYtugvigAzj9RwjxVkMse45WMyM5SMGNKn6CUYNBEWuBw0CwVap4vV-8djHczTZlvQ1z9GV8TYlUjWSyJYU6WahbKKbODyFH6Mrpbfnr4O3gin4mKFNUluhKw8eloYshpWiHv2MSrA_Z6kO2-inbgn9Y8I3zPezd_-h3C20LYwf4R5NGNIyzRyjQrSE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Yajie</creator><creator>Meng, Xinzhu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6553-9686</orcidid></search><sort><creationdate>20190101</creationdate><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><author>Li, Yajie ; Meng, Xinzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Endangered &amp; extinct species</topic><topic>Endangered species</topic><topic>Extinction</topic><topic>Growth</topic><topic>Liapunov functions</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Pollution</topic><topic>Population</topic><topic>Statistical mechanics</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yajie</creatorcontrib><creatorcontrib>Meng, Xinzhu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yajie</au><au>Meng, Xinzhu</au><au>Peterson, Allan C.</au><au>Allan C Peterson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5498569</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6553-9686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2019-01, Vol.2019 (2019), p.1-15
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99
source Publicly Available Content Database; Wiley Open Access Journals
subjects Analysis
Applied mathematics
Computer simulation
Differential equations
Endangered & extinct species
Endangered species
Extinction
Growth
Liapunov functions
Mathematical functions
Mathematical models
Microorganisms
Noise
Numerical analysis
Pollution
Population
Statistical mechanics
Survival analysis
title Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20an%20Impulsive%20Stochastic%20Nonautonomous%20Chemostat%20Model%20with%20Two%20Different%20Growth%20Rates%20in%20a%20Polluted%20Environment&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Li,%20Yajie&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2019/5498569&rft_dat=%3Cgale_doaj_%3EA623928115%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189483871&rft_id=info:pmid/&rft_galeid=A623928115&rfr_iscdi=true