Loading…
Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment
This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and es...
Saved in:
Published in: | Discrete dynamics in nature and society 2019-01, Vol.2019 (2019), p.1-15 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3 |
container_end_page | 15 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2019 |
creator | Li, Yajie Meng, Xinzhu |
description | This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results. |
doi_str_mv | 10.1155/2019/5498569 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623928115</galeid><doaj_id>oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99</doaj_id><sourcerecordid>A623928115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxQdRsFbffJaAjzptPiaZ5LFsa7tQP9AKvoWbmUw3y0yyTTJdiv98s07RRwkhl8PvHu7Nqaq3BJ8QwvkpxUSd8kZJLtSz6ogI3NZStr-elxpTUWNKxcvqVUpbjCmWih5Vv88fPEyuSygMCDxaT7t5TO7eoh85dBtI2XXoS_Aw5-DDFOaEVhs7hZQho8-htyPau7xBN_uAzt0w2Gh9Rpcx7Iv4HbJNyHkE6FsYxznbHl34exeDnwr2unoxwJjsm6f3uPr56eJmdVVff71cr86u664RPNdKGMaajopWqMPtWtI1CnMscduYxghhW2Oasjf0krQd8J4bgyVtcW9Yb9lxtV58-wBbvYtugvigAzj9RwjxVkMse45WMyM5SMGNKn6CUYNBEWuBw0CwVap4vV-8djHczTZlvQ1z9GV8TYlUjWSyJYU6WahbKKbODyFH6Mrpbfnr4O3gin4mKFNUluhKw8eloYshpWiHv2MSrA_Z6kO2-inbgn9Y8I3zPezd_-h3C20LYwf4R5NGNIyzRyjQrSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189483871</pqid></control><display><type>article</type><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Li, Yajie ; Meng, Xinzhu</creator><contributor>Peterson, Allan C. ; Allan C Peterson</contributor><creatorcontrib>Li, Yajie ; Meng, Xinzhu ; Peterson, Allan C. ; Allan C Peterson</creatorcontrib><description>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2019/5498569</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Applied mathematics ; Computer simulation ; Differential equations ; Endangered & extinct species ; Endangered species ; Extinction ; Growth ; Liapunov functions ; Mathematical functions ; Mathematical models ; Microorganisms ; Noise ; Numerical analysis ; Pollution ; Population ; Statistical mechanics ; Survival analysis</subject><ispartof>Discrete dynamics in nature and society, 2019-01, Vol.2019 (2019), p.1-15</ispartof><rights>Copyright © 2019 Yajie Li and Xinzhu Meng.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Yajie Li and Xinzhu Meng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</citedby><cites>FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</cites><orcidid>0000-0002-6553-9686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2189483871/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2189483871?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Peterson, Allan C.</contributor><contributor>Allan C Peterson</contributor><creatorcontrib>Li, Yajie</creatorcontrib><creatorcontrib>Meng, Xinzhu</creatorcontrib><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><title>Discrete dynamics in nature and society</title><description>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Endangered & extinct species</subject><subject>Endangered species</subject><subject>Extinction</subject><subject>Growth</subject><subject>Liapunov functions</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Pollution</subject><subject>Population</subject><subject>Statistical mechanics</subject><subject>Survival analysis</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkd1rFDEUxQdRsFbffJaAjzptPiaZ5LFsa7tQP9AKvoWbmUw3y0yyTTJdiv98s07RRwkhl8PvHu7Nqaq3BJ8QwvkpxUSd8kZJLtSz6ogI3NZStr-elxpTUWNKxcvqVUpbjCmWih5Vv88fPEyuSygMCDxaT7t5TO7eoh85dBtI2XXoS_Aw5-DDFOaEVhs7hZQho8-htyPau7xBN_uAzt0w2Gh9Rpcx7Iv4HbJNyHkE6FsYxznbHl34exeDnwr2unoxwJjsm6f3uPr56eJmdVVff71cr86u664RPNdKGMaajopWqMPtWtI1CnMscduYxghhW2Oasjf0krQd8J4bgyVtcW9Yb9lxtV58-wBbvYtugvigAzj9RwjxVkMse45WMyM5SMGNKn6CUYNBEWuBw0CwVap4vV-8djHczTZlvQ1z9GV8TYlUjWSyJYU6WahbKKbODyFH6Mrpbfnr4O3gin4mKFNUluhKw8eloYshpWiHv2MSrA_Z6kO2-inbgn9Y8I3zPezd_-h3C20LYwf4R5NGNIyzRyjQrSE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Yajie</creator><creator>Meng, Xinzhu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6553-9686</orcidid></search><sort><creationdate>20190101</creationdate><title>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</title><author>Li, Yajie ; Meng, Xinzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Endangered & extinct species</topic><topic>Endangered species</topic><topic>Extinction</topic><topic>Growth</topic><topic>Liapunov functions</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Pollution</topic><topic>Population</topic><topic>Statistical mechanics</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yajie</creatorcontrib><creatorcontrib>Meng, Xinzhu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yajie</au><au>Meng, Xinzhu</au><au>Peterson, Allan C.</au><au>Allan C Peterson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>This paper proposes a novel impulsive stochastic nonautonomous chemostat model with the saturated and bilinear growth rates in a polluted environment. Using the theory of impulsive differential equations and Lyapunov functions method, we first investigate the dynamics of the stochastic system and establish the sufficient conditions for the extinction and the permanence of the microorganisms. Then we demonstrate that the stochastic periodic system has at least one nontrivial positive periodic solution. The results show that both impulsive toxicant input and stochastic noise have great effects on the survival and extinction of the microorganisms. Furthermore, a series of numerical simulations are presented to illustrate the performance of the theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5498569</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6553-9686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2019-01, Vol.2019 (2019), p.1-15 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b85a865b9454632b0a91eea5af10e99 |
source | Publicly Available Content Database; Wiley Open Access Journals |
subjects | Analysis Applied mathematics Computer simulation Differential equations Endangered & extinct species Endangered species Extinction Growth Liapunov functions Mathematical functions Mathematical models Microorganisms Noise Numerical analysis Pollution Population Statistical mechanics Survival analysis |
title | Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20an%20Impulsive%20Stochastic%20Nonautonomous%20Chemostat%20Model%20with%20Two%20Different%20Growth%20Rates%20in%20a%20Polluted%20Environment&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Li,%20Yajie&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2019/5498569&rft_dat=%3Cgale_doaj_%3EA623928115%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-96b334c267696769c71c490508074b4b66e7bb4549ad817ca5d5bb08270db3de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189483871&rft_id=info:pmid/&rft_galeid=A623928115&rfr_iscdi=true |