Loading…
Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (5), p.1982 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1982 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Lemke, Nathan D Martin, Kyle W Beard, River Stuhl, Benjamin K Metcalf, Andrew J Elgin, John D |
description | Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency. |
doi_str_mv | 10.3390/s22051982 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b</doaj_id><sourcerecordid>2638712480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0Eoh9w4A-glbjQQ8Dj8ecFgQKFSkWV-DhbttcbNuyug51Fyr_HISVqOdkaP3r8zgwhz4C-QjT0dWGMCjCaPSCnwBlf6Fp4eOd-Qs5KWVPKEFE_JicomAJg5pS8_RxdmXMc47RtUtfcbLZ9cEPzZfZ9289jsxxS-Nlc5vhrjlPYNV83bpr6adVI0bx3u_KEPOrcUOLT2_OcfL_88G35aXF98_Fq-e56Ebg02wV0XEWupZDa68Bao7WREIBy1jITWtk5EKz1inlEUIJRo0B3CngAdNLhObk6eNvk1naT-9HlnU2ut38LKa-syzX7EC16Q2OgtH4IPHLvpQLVIRcBvWiVr643B9dm9mNsQ-09u-Ge9P7L1P-wq_TbagOCoqyCl7eCnOpcytaOfQlxGNwU01wsk6gVMK5pRV_8h67TnKc6qj2llFYIe-riQIWcSsmxO4YBavc7tscdV_b53fRH8t9S8Q_pRJ5T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637787310</pqid></control><display><type>article</type><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</creator><creatorcontrib>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</creatorcontrib><description>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22051982</identifier><identifier>PMID: 35271129</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>atomic clock ; Calibration ; Clocks ; Clocks & watches ; Drift rate ; Helium ; helium permeation ; Humidity ; Hydrogen ; Laboratories ; Noise ; two-photon spectroscopy ; Vacuum apparatus ; Vapors</subject><ispartof>Sensors (Basel, Switzerland), 2022-03, Vol.22 (5), p.1982</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</citedby><cites>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</cites><orcidid>0000-0003-4165-0715 ; 0000-0001-5000-1018 ; 0000-0003-0759-3323 ; 0000-0002-7886-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637787310/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637787310?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35271129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemke, Nathan D</creatorcontrib><creatorcontrib>Martin, Kyle W</creatorcontrib><creatorcontrib>Beard, River</creatorcontrib><creatorcontrib>Stuhl, Benjamin K</creatorcontrib><creatorcontrib>Metcalf, Andrew J</creatorcontrib><creatorcontrib>Elgin, John D</creatorcontrib><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</description><subject>atomic clock</subject><subject>Calibration</subject><subject>Clocks</subject><subject>Clocks & watches</subject><subject>Drift rate</subject><subject>Helium</subject><subject>helium permeation</subject><subject>Humidity</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Noise</subject><subject>two-photon spectroscopy</subject><subject>Vacuum apparatus</subject><subject>Vapors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0Eoh9w4A-glbjQQ8Dj8ecFgQKFSkWV-DhbttcbNuyug51Fyr_HISVqOdkaP3r8zgwhz4C-QjT0dWGMCjCaPSCnwBlf6Fp4eOd-Qs5KWVPKEFE_JicomAJg5pS8_RxdmXMc47RtUtfcbLZ9cEPzZfZ9289jsxxS-Nlc5vhrjlPYNV83bpr6adVI0bx3u_KEPOrcUOLT2_OcfL_88G35aXF98_Fq-e56Ebg02wV0XEWupZDa68Bao7WREIBy1jITWtk5EKz1inlEUIJRo0B3CngAdNLhObk6eNvk1naT-9HlnU2ut38LKa-syzX7EC16Q2OgtH4IPHLvpQLVIRcBvWiVr643B9dm9mNsQ-09u-Ge9P7L1P-wq_TbagOCoqyCl7eCnOpcytaOfQlxGNwU01wsk6gVMK5pRV_8h67TnKc6qj2llFYIe-riQIWcSsmxO4YBavc7tscdV_b53fRH8t9S8Q_pRJ5T</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Lemke, Nathan D</creator><creator>Martin, Kyle W</creator><creator>Beard, River</creator><creator>Stuhl, Benjamin K</creator><creator>Metcalf, Andrew J</creator><creator>Elgin, John D</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4165-0715</orcidid><orcidid>https://orcid.org/0000-0001-5000-1018</orcidid><orcidid>https://orcid.org/0000-0003-0759-3323</orcidid><orcidid>https://orcid.org/0000-0002-7886-5026</orcidid></search><sort><creationdate>20220303</creationdate><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><author>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>atomic clock</topic><topic>Calibration</topic><topic>Clocks</topic><topic>Clocks & watches</topic><topic>Drift rate</topic><topic>Helium</topic><topic>helium permeation</topic><topic>Humidity</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Noise</topic><topic>two-photon spectroscopy</topic><topic>Vacuum apparatus</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemke, Nathan D</creatorcontrib><creatorcontrib>Martin, Kyle W</creatorcontrib><creatorcontrib>Beard, River</creatorcontrib><creatorcontrib>Stuhl, Benjamin K</creatorcontrib><creatorcontrib>Metcalf, Andrew J</creatorcontrib><creatorcontrib>Elgin, John D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemke, Nathan D</au><au>Martin, Kyle W</au><au>Beard, River</au><au>Stuhl, Benjamin K</au><au>Metcalf, Andrew J</au><au>Elgin, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>1982</spage><pages>1982-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35271129</pmid><doi>10.3390/s22051982</doi><orcidid>https://orcid.org/0000-0003-4165-0715</orcidid><orcidid>https://orcid.org/0000-0001-5000-1018</orcidid><orcidid>https://orcid.org/0000-0003-0759-3323</orcidid><orcidid>https://orcid.org/0000-0002-7886-5026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-03, Vol.22 (5), p.1982 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | atomic clock Calibration Clocks Clocks & watches Drift rate Helium helium permeation Humidity Hydrogen Laboratories Noise two-photon spectroscopy Vacuum apparatus Vapors |
title | Measurement of Optical Rubidium Clock Frequency Spanning 65 Days |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Optical%20Rubidium%20Clock%20Frequency%20Spanning%2065%20Days&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lemke,%20Nathan%20D&rft.date=2022-03-03&rft.volume=22&rft.issue=5&rft.spage=1982&rft.pages=1982-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22051982&rft_dat=%3Cproquest_doaj_%3E2638712480%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637787310&rft_id=info:pmid/35271129&rfr_iscdi=true |