Loading…

Measurement of Optical Rubidium Clock Frequency Spanning 65 Days

Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (5), p.1982
Main Authors: Lemke, Nathan D, Martin, Kyle W, Beard, River, Stuhl, Benjamin K, Metcalf, Andrew J, Elgin, John D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3
cites cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3
container_end_page
container_issue 5
container_start_page 1982
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Lemke, Nathan D
Martin, Kyle W
Beard, River
Stuhl, Benjamin K
Metcalf, Andrew J
Elgin, John D
description Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.
doi_str_mv 10.3390/s22051982
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b</doaj_id><sourcerecordid>2638712480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0Eoh9w4A-glbjQQ8Dj8ecFgQKFSkWV-DhbttcbNuyug51Fyr_HISVqOdkaP3r8zgwhz4C-QjT0dWGMCjCaPSCnwBlf6Fp4eOd-Qs5KWVPKEFE_JicomAJg5pS8_RxdmXMc47RtUtfcbLZ9cEPzZfZ9289jsxxS-Nlc5vhrjlPYNV83bpr6adVI0bx3u_KEPOrcUOLT2_OcfL_88G35aXF98_Fq-e56Ebg02wV0XEWupZDa68Bao7WREIBy1jITWtk5EKz1inlEUIJRo0B3CngAdNLhObk6eNvk1naT-9HlnU2ut38LKa-syzX7EC16Q2OgtH4IPHLvpQLVIRcBvWiVr643B9dm9mNsQ-09u-Ge9P7L1P-wq_TbagOCoqyCl7eCnOpcytaOfQlxGNwU01wsk6gVMK5pRV_8h67TnKc6qj2llFYIe-riQIWcSsmxO4YBavc7tscdV_b53fRH8t9S8Q_pRJ5T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637787310</pqid></control><display><type>article</type><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</creator><creatorcontrib>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</creatorcontrib><description>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22051982</identifier><identifier>PMID: 35271129</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>atomic clock ; Calibration ; Clocks ; Clocks &amp; watches ; Drift rate ; Helium ; helium permeation ; Humidity ; Hydrogen ; Laboratories ; Noise ; two-photon spectroscopy ; Vacuum apparatus ; Vapors</subject><ispartof>Sensors (Basel, Switzerland), 2022-03, Vol.22 (5), p.1982</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</citedby><cites>FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</cites><orcidid>0000-0003-4165-0715 ; 0000-0001-5000-1018 ; 0000-0003-0759-3323 ; 0000-0002-7886-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637787310/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637787310?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35271129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemke, Nathan D</creatorcontrib><creatorcontrib>Martin, Kyle W</creatorcontrib><creatorcontrib>Beard, River</creatorcontrib><creatorcontrib>Stuhl, Benjamin K</creatorcontrib><creatorcontrib>Metcalf, Andrew J</creatorcontrib><creatorcontrib>Elgin, John D</creatorcontrib><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</description><subject>atomic clock</subject><subject>Calibration</subject><subject>Clocks</subject><subject>Clocks &amp; watches</subject><subject>Drift rate</subject><subject>Helium</subject><subject>helium permeation</subject><subject>Humidity</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Noise</subject><subject>two-photon spectroscopy</subject><subject>Vacuum apparatus</subject><subject>Vapors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0Eoh9w4A-glbjQQ8Dj8ecFgQKFSkWV-DhbttcbNuyug51Fyr_HISVqOdkaP3r8zgwhz4C-QjT0dWGMCjCaPSCnwBlf6Fp4eOd-Qs5KWVPKEFE_JicomAJg5pS8_RxdmXMc47RtUtfcbLZ9cEPzZfZ9289jsxxS-Nlc5vhrjlPYNV83bpr6adVI0bx3u_KEPOrcUOLT2_OcfL_88G35aXF98_Fq-e56Ebg02wV0XEWupZDa68Bao7WREIBy1jITWtk5EKz1inlEUIJRo0B3CngAdNLhObk6eNvk1naT-9HlnU2ut38LKa-syzX7EC16Q2OgtH4IPHLvpQLVIRcBvWiVr643B9dm9mNsQ-09u-Ge9P7L1P-wq_TbagOCoqyCl7eCnOpcytaOfQlxGNwU01wsk6gVMK5pRV_8h67TnKc6qj2llFYIe-riQIWcSsmxO4YBavc7tscdV_b53fRH8t9S8Q_pRJ5T</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Lemke, Nathan D</creator><creator>Martin, Kyle W</creator><creator>Beard, River</creator><creator>Stuhl, Benjamin K</creator><creator>Metcalf, Andrew J</creator><creator>Elgin, John D</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4165-0715</orcidid><orcidid>https://orcid.org/0000-0001-5000-1018</orcidid><orcidid>https://orcid.org/0000-0003-0759-3323</orcidid><orcidid>https://orcid.org/0000-0002-7886-5026</orcidid></search><sort><creationdate>20220303</creationdate><title>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</title><author>Lemke, Nathan D ; Martin, Kyle W ; Beard, River ; Stuhl, Benjamin K ; Metcalf, Andrew J ; Elgin, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>atomic clock</topic><topic>Calibration</topic><topic>Clocks</topic><topic>Clocks &amp; watches</topic><topic>Drift rate</topic><topic>Helium</topic><topic>helium permeation</topic><topic>Humidity</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Noise</topic><topic>two-photon spectroscopy</topic><topic>Vacuum apparatus</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemke, Nathan D</creatorcontrib><creatorcontrib>Martin, Kyle W</creatorcontrib><creatorcontrib>Beard, River</creatorcontrib><creatorcontrib>Stuhl, Benjamin K</creatorcontrib><creatorcontrib>Metcalf, Andrew J</creatorcontrib><creatorcontrib>Elgin, John D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemke, Nathan D</au><au>Martin, Kyle W</au><au>Beard, River</au><au>Stuhl, Benjamin K</au><au>Metcalf, Andrew J</au><au>Elgin, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Optical Rubidium Clock Frequency Spanning 65 Days</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>1982</spage><pages>1982-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35271129</pmid><doi>10.3390/s22051982</doi><orcidid>https://orcid.org/0000-0003-4165-0715</orcidid><orcidid>https://orcid.org/0000-0001-5000-1018</orcidid><orcidid>https://orcid.org/0000-0003-0759-3323</orcidid><orcidid>https://orcid.org/0000-0002-7886-5026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-03, Vol.22 (5), p.1982
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3b90ec007e414e4bb6717f345c3b5d7b
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects atomic clock
Calibration
Clocks
Clocks & watches
Drift rate
Helium
helium permeation
Humidity
Hydrogen
Laboratories
Noise
two-photon spectroscopy
Vacuum apparatus
Vapors
title Measurement of Optical Rubidium Clock Frequency Spanning 65 Days
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Optical%20Rubidium%20Clock%20Frequency%20Spanning%2065%20Days&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lemke,%20Nathan%20D&rft.date=2022-03-03&rft.volume=22&rft.issue=5&rft.spage=1982&rft.pages=1982-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22051982&rft_dat=%3Cproquest_doaj_%3E2638712480%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-1f47e486568b8c2d988961c1042d29cd6fa152db72b33175209718f714c13a6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637787310&rft_id=info:pmid/35271129&rfr_iscdi=true