Loading…

Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis

Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed th...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-07, Vol.15 (14), p.3591
Main Authors: Jiang, Guo, Chen, Xi, Wang, Jinlin, Wang, Shanshan, Zhou, Shuguang, Bai, Yong, Liao, Tao, Yang, He, Ma, Kai, Fan, Xianglian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03
cites cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03
container_end_page
container_issue 14
container_start_page 3591
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Jiang, Guo
Chen, Xi
Wang, Jinlin
Wang, Shanshan
Zhou, Shuguang
Bai, Yong
Liao, Tao
Yang, He
Ma, Kai
Fan, Xianglian
description Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.
doi_str_mv 10.3390/rs15143591
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759222112</galeid><doaj_id>oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816</doaj_id><sourcerecordid>A759222112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</originalsourceid><addsrcrecordid>eNpNkd1qFDEUxwexYKm98QkC3glT8zmZuVyXWheqhfpxG85kTmrW2WRNsuDe-QztG_okTV1pTSDncPL__0jOaZpXjJ4JMdC3KTPFpFADe9Ycc6p5K_nAn_-Xv2hOc17TuoRgA5XHze15Ln4DxcdAoiPlO5KPu7l4nHGDoZBlDOUh-kCuo_2RyTvIOJGqhnq3GX149H7z2Y8z_vl99wkhtavgEqSqvUY3oy0QLJLP25qlmG3c7gmEqeLqsQoT_iKLAPM--_yyOXIwZzz9F0-ar-_Pvyw_tJdXF6vl4rK1ktLSagpcdoL3mo9Tpzgo5NA7xhRoJSdQWlI5IR0HRIYAQmCtYT9ZPYIdqThpVgfuFGFttqm2Ie1NBG_-FmK6MZCKtzMaMQLXlUFH7iTtOtDAmes1VUPnetZV1usDa5vizx3mYtZxl-qHsuG9FIxKrvqqOjuobqBCfXCxJLB1T7jxNgZ0vtYXWg2cc8Z4Nbw5GGztWU7oHp_JqHmYuXmaubgHD5uf4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843104258</pqid></control><display><type>article</type><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><source>Publicly Available Content Database</source><creator>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</creator><creatorcontrib>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</creatorcontrib><description>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15143591</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; band indices ; Cobalt ; Content analysis ; Copper ; Cost analysis ; Feature selection ; Geological surveys ; Global positioning systems ; GPS ; Infrared analysis ; Infrared reflection ; Infrared spectra ; Infrared spectroscopy ; Iron ; Laboratories ; Methods ; Mineral industry ; Mineralization ; Mining industry ; Near infrared radiation ; Nickel ; partial least squares ; polymetallic element content ; Remote sensing ; Rocks ; Scientific imaging ; Spectral resolution ; Surveys ; Titanium ; visible–near-infrared</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-07, Vol.15 (14), p.3591</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</citedby><cites>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</cites><orcidid>0000-0001-5359-5499 ; 0000-0003-4625-7605 ; 0000-0002-5133-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843104258/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843104258?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Jiang, Guo</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Liao, Tao</creatorcontrib><creatorcontrib>Yang, He</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Fan, Xianglian</creatorcontrib><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><title>Remote sensing (Basel, Switzerland)</title><description>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>band indices</subject><subject>Cobalt</subject><subject>Content analysis</subject><subject>Copper</subject><subject>Cost analysis</subject><subject>Feature selection</subject><subject>Geological surveys</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Mineral industry</subject><subject>Mineralization</subject><subject>Mining industry</subject><subject>Near infrared radiation</subject><subject>Nickel</subject><subject>partial least squares</subject><subject>polymetallic element content</subject><subject>Remote sensing</subject><subject>Rocks</subject><subject>Scientific imaging</subject><subject>Spectral resolution</subject><subject>Surveys</subject><subject>Titanium</subject><subject>visible–near-infrared</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qFDEUxwexYKm98QkC3glT8zmZuVyXWheqhfpxG85kTmrW2WRNsuDe-QztG_okTV1pTSDncPL__0jOaZpXjJ4JMdC3KTPFpFADe9Ycc6p5K_nAn_-Xv2hOc17TuoRgA5XHze15Ln4DxcdAoiPlO5KPu7l4nHGDoZBlDOUh-kCuo_2RyTvIOJGqhnq3GX149H7z2Y8z_vl99wkhtavgEqSqvUY3oy0QLJLP25qlmG3c7gmEqeLqsQoT_iKLAPM--_yyOXIwZzz9F0-ar-_Pvyw_tJdXF6vl4rK1ktLSagpcdoL3mo9Tpzgo5NA7xhRoJSdQWlI5IR0HRIYAQmCtYT9ZPYIdqThpVgfuFGFttqm2Ie1NBG_-FmK6MZCKtzMaMQLXlUFH7iTtOtDAmes1VUPnetZV1usDa5vizx3mYtZxl-qHsuG9FIxKrvqqOjuobqBCfXCxJLB1T7jxNgZ0vtYXWg2cc8Z4Nbw5GGztWU7oHp_JqHmYuXmaubgHD5uf4g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Jiang, Guo</creator><creator>Chen, Xi</creator><creator>Wang, Jinlin</creator><creator>Wang, Shanshan</creator><creator>Zhou, Shuguang</creator><creator>Bai, Yong</creator><creator>Liao, Tao</creator><creator>Yang, He</creator><creator>Ma, Kai</creator><creator>Fan, Xianglian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5359-5499</orcidid><orcidid>https://orcid.org/0000-0003-4625-7605</orcidid><orcidid>https://orcid.org/0000-0002-5133-5228</orcidid></search><sort><creationdate>20230701</creationdate><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><author>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>band indices</topic><topic>Cobalt</topic><topic>Content analysis</topic><topic>Copper</topic><topic>Cost analysis</topic><topic>Feature selection</topic><topic>Geological surveys</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Mineral industry</topic><topic>Mineralization</topic><topic>Mining industry</topic><topic>Near infrared radiation</topic><topic>Nickel</topic><topic>partial least squares</topic><topic>polymetallic element content</topic><topic>Remote sensing</topic><topic>Rocks</topic><topic>Scientific imaging</topic><topic>Spectral resolution</topic><topic>Surveys</topic><topic>Titanium</topic><topic>visible–near-infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guo</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Liao, Tao</creatorcontrib><creatorcontrib>Yang, He</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Fan, Xianglian</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guo</au><au>Chen, Xi</au><au>Wang, Jinlin</au><au>Wang, Shanshan</au><au>Zhou, Shuguang</au><au>Bai, Yong</au><au>Liao, Tao</au><au>Yang, He</au><au>Ma, Kai</au><au>Fan, Xianglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>3591</spage><pages>3591-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15143591</doi><orcidid>https://orcid.org/0000-0001-5359-5499</orcidid><orcidid>https://orcid.org/0000-0003-4625-7605</orcidid><orcidid>https://orcid.org/0000-0002-5133-5228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-07, Vol.15 (14), p.3591
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816
source Publicly Available Content Database
subjects Accuracy
Algorithms
band indices
Cobalt
Content analysis
Copper
Cost analysis
Feature selection
Geological surveys
Global positioning systems
GPS
Infrared analysis
Infrared reflection
Infrared spectra
Infrared spectroscopy
Iron
Laboratories
Methods
Mineral industry
Mineralization
Mining industry
Near infrared radiation
Nickel
partial least squares
polymetallic element content
Remote sensing
Rocks
Scientific imaging
Spectral resolution
Surveys
Titanium
visible–near-infrared
title Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Multielement%20Content%20in%20Rocks%20Based%20on%20a%20Combination%20of%20Visible%E2%80%93Near-Infrared%20Reflectance%20Spectroscopy%20and%20Band%20Index%20Analysis&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Jiang,%20Guo&rft.date=2023-07-01&rft.volume=15&rft.issue=14&rft.spage=3591&rft.pages=3591-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15143591&rft_dat=%3Cgale_doaj_%3EA759222112%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843104258&rft_id=info:pmid/&rft_galeid=A759222112&rfr_iscdi=true