Loading…
Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis
Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed th...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-07, Vol.15 (14), p.3591 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03 |
container_end_page | |
container_issue | 14 |
container_start_page | 3591 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Jiang, Guo Chen, Xi Wang, Jinlin Wang, Shanshan Zhou, Shuguang Bai, Yong Liao, Tao Yang, He Ma, Kai Fan, Xianglian |
description | Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution. |
doi_str_mv | 10.3390/rs15143591 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759222112</galeid><doaj_id>oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816</doaj_id><sourcerecordid>A759222112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</originalsourceid><addsrcrecordid>eNpNkd1qFDEUxwexYKm98QkC3glT8zmZuVyXWheqhfpxG85kTmrW2WRNsuDe-QztG_okTV1pTSDncPL__0jOaZpXjJ4JMdC3KTPFpFADe9Ycc6p5K_nAn_-Xv2hOc17TuoRgA5XHze15Ln4DxcdAoiPlO5KPu7l4nHGDoZBlDOUh-kCuo_2RyTvIOJGqhnq3GX149H7z2Y8z_vl99wkhtavgEqSqvUY3oy0QLJLP25qlmG3c7gmEqeLqsQoT_iKLAPM--_yyOXIwZzz9F0-ar-_Pvyw_tJdXF6vl4rK1ktLSagpcdoL3mo9Tpzgo5NA7xhRoJSdQWlI5IR0HRIYAQmCtYT9ZPYIdqThpVgfuFGFttqm2Ie1NBG_-FmK6MZCKtzMaMQLXlUFH7iTtOtDAmes1VUPnetZV1usDa5vizx3mYtZxl-qHsuG9FIxKrvqqOjuobqBCfXCxJLB1T7jxNgZ0vtYXWg2cc8Z4Nbw5GGztWU7oHp_JqHmYuXmaubgHD5uf4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843104258</pqid></control><display><type>article</type><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><source>Publicly Available Content Database</source><creator>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</creator><creatorcontrib>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</creatorcontrib><description>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15143591</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; band indices ; Cobalt ; Content analysis ; Copper ; Cost analysis ; Feature selection ; Geological surveys ; Global positioning systems ; GPS ; Infrared analysis ; Infrared reflection ; Infrared spectra ; Infrared spectroscopy ; Iron ; Laboratories ; Methods ; Mineral industry ; Mineralization ; Mining industry ; Near infrared radiation ; Nickel ; partial least squares ; polymetallic element content ; Remote sensing ; Rocks ; Scientific imaging ; Spectral resolution ; Surveys ; Titanium ; visible–near-infrared</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-07, Vol.15 (14), p.3591</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</citedby><cites>FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</cites><orcidid>0000-0001-5359-5499 ; 0000-0003-4625-7605 ; 0000-0002-5133-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843104258/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843104258?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Jiang, Guo</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Liao, Tao</creatorcontrib><creatorcontrib>Yang, He</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Fan, Xianglian</creatorcontrib><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><title>Remote sensing (Basel, Switzerland)</title><description>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>band indices</subject><subject>Cobalt</subject><subject>Content analysis</subject><subject>Copper</subject><subject>Cost analysis</subject><subject>Feature selection</subject><subject>Geological surveys</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Mineral industry</subject><subject>Mineralization</subject><subject>Mining industry</subject><subject>Near infrared radiation</subject><subject>Nickel</subject><subject>partial least squares</subject><subject>polymetallic element content</subject><subject>Remote sensing</subject><subject>Rocks</subject><subject>Scientific imaging</subject><subject>Spectral resolution</subject><subject>Surveys</subject><subject>Titanium</subject><subject>visible–near-infrared</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qFDEUxwexYKm98QkC3glT8zmZuVyXWheqhfpxG85kTmrW2WRNsuDe-QztG_okTV1pTSDncPL__0jOaZpXjJ4JMdC3KTPFpFADe9Ycc6p5K_nAn_-Xv2hOc17TuoRgA5XHze15Ln4DxcdAoiPlO5KPu7l4nHGDoZBlDOUh-kCuo_2RyTvIOJGqhnq3GX149H7z2Y8z_vl99wkhtavgEqSqvUY3oy0QLJLP25qlmG3c7gmEqeLqsQoT_iKLAPM--_yyOXIwZzz9F0-ar-_Pvyw_tJdXF6vl4rK1ktLSagpcdoL3mo9Tpzgo5NA7xhRoJSdQWlI5IR0HRIYAQmCtYT9ZPYIdqThpVgfuFGFttqm2Ie1NBG_-FmK6MZCKtzMaMQLXlUFH7iTtOtDAmes1VUPnetZV1usDa5vizx3mYtZxl-qHsuG9FIxKrvqqOjuobqBCfXCxJLB1T7jxNgZ0vtYXWg2cc8Z4Nbw5GGztWU7oHp_JqHmYuXmaubgHD5uf4g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Jiang, Guo</creator><creator>Chen, Xi</creator><creator>Wang, Jinlin</creator><creator>Wang, Shanshan</creator><creator>Zhou, Shuguang</creator><creator>Bai, Yong</creator><creator>Liao, Tao</creator><creator>Yang, He</creator><creator>Ma, Kai</creator><creator>Fan, Xianglian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5359-5499</orcidid><orcidid>https://orcid.org/0000-0003-4625-7605</orcidid><orcidid>https://orcid.org/0000-0002-5133-5228</orcidid></search><sort><creationdate>20230701</creationdate><title>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</title><author>Jiang, Guo ; Chen, Xi ; Wang, Jinlin ; Wang, Shanshan ; Zhou, Shuguang ; Bai, Yong ; Liao, Tao ; Yang, He ; Ma, Kai ; Fan, Xianglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>band indices</topic><topic>Cobalt</topic><topic>Content analysis</topic><topic>Copper</topic><topic>Cost analysis</topic><topic>Feature selection</topic><topic>Geological surveys</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Mineral industry</topic><topic>Mineralization</topic><topic>Mining industry</topic><topic>Near infrared radiation</topic><topic>Nickel</topic><topic>partial least squares</topic><topic>polymetallic element content</topic><topic>Remote sensing</topic><topic>Rocks</topic><topic>Scientific imaging</topic><topic>Spectral resolution</topic><topic>Surveys</topic><topic>Titanium</topic><topic>visible–near-infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guo</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><creatorcontrib>Bai, Yong</creatorcontrib><creatorcontrib>Liao, Tao</creatorcontrib><creatorcontrib>Yang, He</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Fan, Xianglian</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guo</au><au>Chen, Xi</au><au>Wang, Jinlin</au><au>Wang, Shanshan</au><au>Zhou, Shuguang</au><au>Bai, Yong</au><au>Liao, Tao</au><au>Yang, He</au><au>Ma, Kai</au><au>Fan, Xianglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>3591</spage><pages>3591-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15143591</doi><orcidid>https://orcid.org/0000-0001-5359-5499</orcidid><orcidid>https://orcid.org/0000-0003-4625-7605</orcidid><orcidid>https://orcid.org/0000-0002-5133-5228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-07, Vol.15 (14), p.3591 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3ba27eaa0b2f4066a7a21f870596f816 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms band indices Cobalt Content analysis Copper Cost analysis Feature selection Geological surveys Global positioning systems GPS Infrared analysis Infrared reflection Infrared spectra Infrared spectroscopy Iron Laboratories Methods Mineral industry Mineralization Mining industry Near infrared radiation Nickel partial least squares polymetallic element content Remote sensing Rocks Scientific imaging Spectral resolution Surveys Titanium visible–near-infrared |
title | Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Multielement%20Content%20in%20Rocks%20Based%20on%20a%20Combination%20of%20Visible%E2%80%93Near-Infrared%20Reflectance%20Spectroscopy%20and%20Band%20Index%20Analysis&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Jiang,%20Guo&rft.date=2023-07-01&rft.volume=15&rft.issue=14&rft.spage=3591&rft.pages=3591-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15143591&rft_dat=%3Cgale_doaj_%3EA759222112%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-70a24632872bd652a5e2a8f115a754da57404de0b9ee1eaa33ea57e8dc7bacb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843104258&rft_id=info:pmid/&rft_galeid=A759222112&rfr_iscdi=true |