Loading…
Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense
Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological real...
Saved in:
Published in: | BMC genomics 2024-07, Vol.25 (1), p.748-15, Article 748 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 748 |
container_title | BMC genomics |
container_volume | 25 |
creator | Mu, Zhiying Xu, Mingyue Manda, Teja Chen, Jinhui Yang, Liming Hwarari, Delight |
description | Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense.
233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa.
Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses. |
doi_str_mv | 10.1186/s12864-024-10560-3 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803412828</galeid><doaj_id>oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d</doaj_id><sourcerecordid>A803412828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdR7If-AS9kwJsWnJrvyVxJWaouLghr70M2c2Y329lkTDJF_Rf-YzPdWrsigeTk5D1POIe3KF5hdIGxFO8iJlKwChFWYcQFquiT4hizGlcEC_b0UXxUnMS4RQjXkvDnxRFtkOS15MfFr9lGB20SBPtTJ-vd2xJufT_uQ-3aUq-sT9aUMQWIsczb4F2EWPqu7GE01kEVrNnklwF0yoeBIflQ9fYGyiH4BNaVN9bpqehssVxWy8Xn8zInFzZY34Jrg3el2WRSBr8onnW6j_Dy_jwtrj9cXc8-VYsvH-ezy0VlWN2kShCkuaZcA6kZ5lq2mMvcHWIUYSTMijEiayMIiFq2dQPTDdWNoGJFKKOnxXyPbb3eqiHYnQ4_lNdW3SV8WCsdct89KLrSvO54K5g0DDMpscANpsZITVtJ2sx6v2cN42oHrQGXgu4PoIcvzm7U2t8qjElDMioTzu4JwX8bISa1s9FA32sHfoyKIikazomQWfrmH-nWj8HlUWVVk4GINeyvaq1zB9Z1Pn9sJqi6lIiybB0ysS7-o8qrhZ013kFnc_6g4PygIGsSfE9rPcao5l-Xh1qy15rgYwzQPQwEIzUZWO0NrLKB1Z2B1TSI149H-VDyx7H0N8Fo6UQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091290494</pqid></control><display><type>article</type><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</creator><creatorcontrib>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</creatorcontrib><description>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense.
233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa.
Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10560-3</identifier><identifier>PMID: 39085785</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Abiotic stress ; Abiotic stress responses ; Amino acids ; Analysis ; Biological evolution ; Chromosomes ; Classification ; Climate change ; Clustering ; Cold ; Collinearity ; Conserved sequence ; Diseases and pests ; Environmental aspects ; Evolution, Molecular ; Evolutionary conservation ; Evolutionary genetics ; Functionals ; Gene expression ; Gene Expression Regulation, Plant ; Gene regulation ; Gene sequencing ; Genes ; Genetic aspects ; Genome, Plant ; Genomes ; Geographical distribution ; Global climate ; Growth ; Heat resistance ; Kinases ; Leucine ; Leucine-Rich Repeat Proteins ; Liriodendron - genetics ; Liriodendron chinense ; Liriodendron tulipifera ; LRR-RLK genes ; Multigene Family ; Phylogenetics ; Phylogeny ; Plant growth ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant species ; Protein kinase ; Protein kinases ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - metabolism ; Proteins ; Receptors ; Salt stress (Botany) ; Signal transduction ; Species extinction ; Stress, Physiological - genetics ; Stresses ; Subgroups</subject><ispartof>BMC genomics, 2024-07, Vol.25 (1), p.748-15, Article 748</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292913/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091290494?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39085785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Zhiying</creatorcontrib><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Manda, Teja</creatorcontrib><creatorcontrib>Chen, Jinhui</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hwarari, Delight</creatorcontrib><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense.
233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa.
Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</description><subject>Abiotic stress</subject><subject>Abiotic stress responses</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biological evolution</subject><subject>Chromosomes</subject><subject>Classification</subject><subject>Climate change</subject><subject>Clustering</subject><subject>Cold</subject><subject>Collinearity</subject><subject>Conserved sequence</subject><subject>Diseases and pests</subject><subject>Environmental aspects</subject><subject>Evolution, Molecular</subject><subject>Evolutionary conservation</subject><subject>Evolutionary genetics</subject><subject>Functionals</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Geographical distribution</subject><subject>Global climate</subject><subject>Growth</subject><subject>Heat resistance</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Leucine-Rich Repeat Proteins</subject><subject>Liriodendron - genetics</subject><subject>Liriodendron chinense</subject><subject>Liriodendron tulipifera</subject><subject>LRR-RLK genes</subject><subject>Multigene Family</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant growth</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant species</subject><subject>Protein kinase</subject><subject>Protein kinases</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Salt stress (Botany)</subject><subject>Signal transduction</subject><subject>Species extinction</subject><subject>Stress, Physiological - genetics</subject><subject>Stresses</subject><subject>Subgroups</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdR7If-AS9kwJsWnJrvyVxJWaouLghr70M2c2Y329lkTDJF_Rf-YzPdWrsigeTk5D1POIe3KF5hdIGxFO8iJlKwChFWYcQFquiT4hizGlcEC_b0UXxUnMS4RQjXkvDnxRFtkOS15MfFr9lGB20SBPtTJ-vd2xJufT_uQ-3aUq-sT9aUMQWIsczb4F2EWPqu7GE01kEVrNnklwF0yoeBIflQ9fYGyiH4BNaVN9bpqehssVxWy8Xn8zInFzZY34Jrg3el2WRSBr8onnW6j_Dy_jwtrj9cXc8-VYsvH-ezy0VlWN2kShCkuaZcA6kZ5lq2mMvcHWIUYSTMijEiayMIiFq2dQPTDdWNoGJFKKOnxXyPbb3eqiHYnQ4_lNdW3SV8WCsdct89KLrSvO54K5g0DDMpscANpsZITVtJ2sx6v2cN42oHrQGXgu4PoIcvzm7U2t8qjElDMioTzu4JwX8bISa1s9FA32sHfoyKIikazomQWfrmH-nWj8HlUWVVk4GINeyvaq1zB9Z1Pn9sJqi6lIiybB0ysS7-o8qrhZ013kFnc_6g4PygIGsSfE9rPcao5l-Xh1qy15rgYwzQPQwEIzUZWO0NrLKB1Z2B1TSI149H-VDyx7H0N8Fo6UQ</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Mu, Zhiying</creator><creator>Xu, Mingyue</creator><creator>Manda, Teja</creator><creator>Chen, Jinhui</creator><creator>Yang, Liming</creator><creator>Hwarari, Delight</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240731</creationdate><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><author>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>Abiotic stress responses</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biological evolution</topic><topic>Chromosomes</topic><topic>Classification</topic><topic>Climate change</topic><topic>Clustering</topic><topic>Cold</topic><topic>Collinearity</topic><topic>Conserved sequence</topic><topic>Diseases and pests</topic><topic>Environmental aspects</topic><topic>Evolution, Molecular</topic><topic>Evolutionary conservation</topic><topic>Evolutionary genetics</topic><topic>Functionals</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Geographical distribution</topic><topic>Global climate</topic><topic>Growth</topic><topic>Heat resistance</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Leucine-Rich Repeat Proteins</topic><topic>Liriodendron - genetics</topic><topic>Liriodendron chinense</topic><topic>Liriodendron tulipifera</topic><topic>LRR-RLK genes</topic><topic>Multigene Family</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant growth</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant species</topic><topic>Protein kinase</topic><topic>Protein kinases</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Salt stress (Botany)</topic><topic>Signal transduction</topic><topic>Species extinction</topic><topic>Stress, Physiological - genetics</topic><topic>Stresses</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Zhiying</creatorcontrib><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Manda, Teja</creatorcontrib><creatorcontrib>Chen, Jinhui</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hwarari, Delight</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Zhiying</au><au>Xu, Mingyue</au><au>Manda, Teja</au><au>Chen, Jinhui</au><au>Yang, Liming</au><au>Hwarari, Delight</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>748</spage><epage>15</epage><pages>748-15</pages><artnum>748</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense.
233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa.
Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39085785</pmid><doi>10.1186/s12864-024-10560-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2024-07, Vol.25 (1), p.748-15, Article 748 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Abiotic stress Abiotic stress responses Amino acids Analysis Biological evolution Chromosomes Classification Climate change Clustering Cold Collinearity Conserved sequence Diseases and pests Environmental aspects Evolution, Molecular Evolutionary conservation Evolutionary genetics Functionals Gene expression Gene Expression Regulation, Plant Gene regulation Gene sequencing Genes Genetic aspects Genome, Plant Genomes Geographical distribution Global climate Growth Heat resistance Kinases Leucine Leucine-Rich Repeat Proteins Liriodendron - genetics Liriodendron chinense Liriodendron tulipifera LRR-RLK genes Multigene Family Phylogenetics Phylogeny Plant growth Plant Proteins - genetics Plant Proteins - metabolism Plant species Protein kinase Protein kinases Protein Kinases - genetics Protein Kinases - metabolism Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - metabolism Proteins Receptors Salt stress (Botany) Signal transduction Species extinction Stress, Physiological - genetics Stresses Subgroups |
title | Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization,%20evolution,%20and%20abiotic%20stress%20responses%20of%20leucine-rich%20repeat%20receptor-like%20protein%20kinases%20(LRR-RLK)%20in%20Liriodendron%20chinense&rft.jtitle=BMC%20genomics&rft.au=Mu,%20Zhiying&rft.date=2024-07-31&rft.volume=25&rft.issue=1&rft.spage=748&rft.epage=15&rft.pages=748-15&rft.artnum=748&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10560-3&rft_dat=%3Cgale_doaj_%3EA803412828%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091290494&rft_id=info:pmid/39085785&rft_galeid=A803412828&rfr_iscdi=true |