Loading…

Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense

Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological real...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2024-07, Vol.25 (1), p.748-15, Article 748
Main Authors: Mu, Zhiying, Xu, Mingyue, Manda, Teja, Chen, Jinhui, Yang, Liming, Hwarari, Delight
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343
container_end_page 15
container_issue 1
container_start_page 748
container_title BMC genomics
container_volume 25
creator Mu, Zhiying
Xu, Mingyue
Manda, Teja
Chen, Jinhui
Yang, Liming
Hwarari, Delight
description Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.
doi_str_mv 10.1186/s12864-024-10560-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803412828</galeid><doaj_id>oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d</doaj_id><sourcerecordid>A803412828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdR7If-AS9kwJsWnJrvyVxJWaouLghr70M2c2Y329lkTDJF_Rf-YzPdWrsigeTk5D1POIe3KF5hdIGxFO8iJlKwChFWYcQFquiT4hizGlcEC_b0UXxUnMS4RQjXkvDnxRFtkOS15MfFr9lGB20SBPtTJ-vd2xJufT_uQ-3aUq-sT9aUMQWIsczb4F2EWPqu7GE01kEVrNnklwF0yoeBIflQ9fYGyiH4BNaVN9bpqehssVxWy8Xn8zInFzZY34Jrg3el2WRSBr8onnW6j_Dy_jwtrj9cXc8-VYsvH-ezy0VlWN2kShCkuaZcA6kZ5lq2mMvcHWIUYSTMijEiayMIiFq2dQPTDdWNoGJFKKOnxXyPbb3eqiHYnQ4_lNdW3SV8WCsdct89KLrSvO54K5g0DDMpscANpsZITVtJ2sx6v2cN42oHrQGXgu4PoIcvzm7U2t8qjElDMioTzu4JwX8bISa1s9FA32sHfoyKIikazomQWfrmH-nWj8HlUWVVk4GINeyvaq1zB9Z1Pn9sJqi6lIiybB0ysS7-o8qrhZ013kFnc_6g4PygIGsSfE9rPcao5l-Xh1qy15rgYwzQPQwEIzUZWO0NrLKB1Z2B1TSI149H-VDyx7H0N8Fo6UQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091290494</pqid></control><display><type>article</type><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</creator><creatorcontrib>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</creatorcontrib><description>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10560-3</identifier><identifier>PMID: 39085785</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Abiotic stress ; Abiotic stress responses ; Amino acids ; Analysis ; Biological evolution ; Chromosomes ; Classification ; Climate change ; Clustering ; Cold ; Collinearity ; Conserved sequence ; Diseases and pests ; Environmental aspects ; Evolution, Molecular ; Evolutionary conservation ; Evolutionary genetics ; Functionals ; Gene expression ; Gene Expression Regulation, Plant ; Gene regulation ; Gene sequencing ; Genes ; Genetic aspects ; Genome, Plant ; Genomes ; Geographical distribution ; Global climate ; Growth ; Heat resistance ; Kinases ; Leucine ; Leucine-Rich Repeat Proteins ; Liriodendron - genetics ; Liriodendron chinense ; Liriodendron tulipifera ; LRR-RLK genes ; Multigene Family ; Phylogenetics ; Phylogeny ; Plant growth ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant species ; Protein kinase ; Protein kinases ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - metabolism ; Proteins ; Receptors ; Salt stress (Botany) ; Signal transduction ; Species extinction ; Stress, Physiological - genetics ; Stresses ; Subgroups</subject><ispartof>BMC genomics, 2024-07, Vol.25 (1), p.748-15, Article 748</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292913/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091290494?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39085785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Zhiying</creatorcontrib><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Manda, Teja</creatorcontrib><creatorcontrib>Chen, Jinhui</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hwarari, Delight</creatorcontrib><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</description><subject>Abiotic stress</subject><subject>Abiotic stress responses</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biological evolution</subject><subject>Chromosomes</subject><subject>Classification</subject><subject>Climate change</subject><subject>Clustering</subject><subject>Cold</subject><subject>Collinearity</subject><subject>Conserved sequence</subject><subject>Diseases and pests</subject><subject>Environmental aspects</subject><subject>Evolution, Molecular</subject><subject>Evolutionary conservation</subject><subject>Evolutionary genetics</subject><subject>Functionals</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Geographical distribution</subject><subject>Global climate</subject><subject>Growth</subject><subject>Heat resistance</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Leucine-Rich Repeat Proteins</subject><subject>Liriodendron - genetics</subject><subject>Liriodendron chinense</subject><subject>Liriodendron tulipifera</subject><subject>LRR-RLK genes</subject><subject>Multigene Family</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant growth</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant species</subject><subject>Protein kinase</subject><subject>Protein kinases</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Salt stress (Botany)</subject><subject>Signal transduction</subject><subject>Species extinction</subject><subject>Stress, Physiological - genetics</subject><subject>Stresses</subject><subject>Subgroups</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdR7If-AS9kwJsWnJrvyVxJWaouLghr70M2c2Y329lkTDJF_Rf-YzPdWrsigeTk5D1POIe3KF5hdIGxFO8iJlKwChFWYcQFquiT4hizGlcEC_b0UXxUnMS4RQjXkvDnxRFtkOS15MfFr9lGB20SBPtTJ-vd2xJufT_uQ-3aUq-sT9aUMQWIsczb4F2EWPqu7GE01kEVrNnklwF0yoeBIflQ9fYGyiH4BNaVN9bpqehssVxWy8Xn8zInFzZY34Jrg3el2WRSBr8onnW6j_Dy_jwtrj9cXc8-VYsvH-ezy0VlWN2kShCkuaZcA6kZ5lq2mMvcHWIUYSTMijEiayMIiFq2dQPTDdWNoGJFKKOnxXyPbb3eqiHYnQ4_lNdW3SV8WCsdct89KLrSvO54K5g0DDMpscANpsZITVtJ2sx6v2cN42oHrQGXgu4PoIcvzm7U2t8qjElDMioTzu4JwX8bISa1s9FA32sHfoyKIikazomQWfrmH-nWj8HlUWVVk4GINeyvaq1zB9Z1Pn9sJqi6lIiybB0ysS7-o8qrhZ013kFnc_6g4PygIGsSfE9rPcao5l-Xh1qy15rgYwzQPQwEIzUZWO0NrLKB1Z2B1TSI149H-VDyx7H0N8Fo6UQ</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Mu, Zhiying</creator><creator>Xu, Mingyue</creator><creator>Manda, Teja</creator><creator>Chen, Jinhui</creator><creator>Yang, Liming</creator><creator>Hwarari, Delight</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240731</creationdate><title>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</title><author>Mu, Zhiying ; Xu, Mingyue ; Manda, Teja ; Chen, Jinhui ; Yang, Liming ; Hwarari, Delight</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>Abiotic stress responses</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biological evolution</topic><topic>Chromosomes</topic><topic>Classification</topic><topic>Climate change</topic><topic>Clustering</topic><topic>Cold</topic><topic>Collinearity</topic><topic>Conserved sequence</topic><topic>Diseases and pests</topic><topic>Environmental aspects</topic><topic>Evolution, Molecular</topic><topic>Evolutionary conservation</topic><topic>Evolutionary genetics</topic><topic>Functionals</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Geographical distribution</topic><topic>Global climate</topic><topic>Growth</topic><topic>Heat resistance</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Leucine-Rich Repeat Proteins</topic><topic>Liriodendron - genetics</topic><topic>Liriodendron chinense</topic><topic>Liriodendron tulipifera</topic><topic>LRR-RLK genes</topic><topic>Multigene Family</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant growth</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant species</topic><topic>Protein kinase</topic><topic>Protein kinases</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Salt stress (Botany)</topic><topic>Signal transduction</topic><topic>Species extinction</topic><topic>Stress, Physiological - genetics</topic><topic>Stresses</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Zhiying</creatorcontrib><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Manda, Teja</creatorcontrib><creatorcontrib>Chen, Jinhui</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hwarari, Delight</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Zhiying</au><au>Xu, Mingyue</au><au>Manda, Teja</au><au>Chen, Jinhui</au><au>Yang, Liming</au><au>Hwarari, Delight</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>748</spage><epage>15</epage><pages>748-15</pages><artnum>748</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39085785</pmid><doi>10.1186/s12864-024-10560-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2024-07, Vol.25 (1), p.748-15, Article 748
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ba57f5d648c41488161913cc8a3d82d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Abiotic stress
Abiotic stress responses
Amino acids
Analysis
Biological evolution
Chromosomes
Classification
Climate change
Clustering
Cold
Collinearity
Conserved sequence
Diseases and pests
Environmental aspects
Evolution, Molecular
Evolutionary conservation
Evolutionary genetics
Functionals
Gene expression
Gene Expression Regulation, Plant
Gene regulation
Gene sequencing
Genes
Genetic aspects
Genome, Plant
Genomes
Geographical distribution
Global climate
Growth
Heat resistance
Kinases
Leucine
Leucine-Rich Repeat Proteins
Liriodendron - genetics
Liriodendron chinense
Liriodendron tulipifera
LRR-RLK genes
Multigene Family
Phylogenetics
Phylogeny
Plant growth
Plant Proteins - genetics
Plant Proteins - metabolism
Plant species
Protein kinase
Protein kinases
Protein Kinases - genetics
Protein Kinases - metabolism
Protein-Tyrosine Kinases - genetics
Protein-Tyrosine Kinases - metabolism
Proteins
Receptors
Salt stress (Botany)
Signal transduction
Species extinction
Stress, Physiological - genetics
Stresses
Subgroups
title Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization,%20evolution,%20and%20abiotic%20stress%20responses%20of%20leucine-rich%20repeat%20receptor-like%20protein%20kinases%20(LRR-RLK)%20in%20Liriodendron%20chinense&rft.jtitle=BMC%20genomics&rft.au=Mu,%20Zhiying&rft.date=2024-07-31&rft.volume=25&rft.issue=1&rft.spage=748&rft.epage=15&rft.pages=748-15&rft.artnum=748&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10560-3&rft_dat=%3Cgale_doaj_%3EA803412828%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-620a5a35ae27415a8d1588250430106cb44287c62e678d79e287c079636b2343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091290494&rft_id=info:pmid/39085785&rft_galeid=A803412828&rfr_iscdi=true