Loading…

Digitalization of an Industrial Process for Bearing Production

The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelligence (AI) and data treatment, have open up a wide range of possibilities for improving the quality of the production systems in diverse industrial fields. The present paper describes the automatizing process...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (23), p.7783
Main Authors: Rodriguez-Fortun, Jose-Manuel, Alvarez, Jorge, Monzon, Luis, Salillas, Ricardo, Noriega, Sergio, Escuin, David, Abadia, David, Barrutia, Aitor, Gaspar, Victor, Romeo, Jose Antonio, Cebrian, Fernando, Del-Hoyo-Alonso, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-24a58e5cbfd16dc0fcfcbe697c9bbd83db1b99ccaf49b8b72487e8a6c5efaa43
container_end_page
container_issue 23
container_start_page 7783
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Rodriguez-Fortun, Jose-Manuel
Alvarez, Jorge
Monzon, Luis
Salillas, Ricardo
Noriega, Sergio
Escuin, David
Abadia, David
Barrutia, Aitor
Gaspar, Victor
Romeo, Jose Antonio
Cebrian, Fernando
Del-Hoyo-Alonso, Rafael
description The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelligence (AI) and data treatment, have open up a wide range of possibilities for improving the quality of the production systems in diverse industrial fields. The present paper describes the automatizing process performed in a production line for high-quality bearings. The actuation considered new sensing elements at the machine level and the treatment of the information, fusing the different sources in order to detect quality defects in the grinding process (waviness, burns) and monitoring the state of the tool. At a supervision level, an AI model has been developed for monitoring the complete line and compensating deviations in the dimension of the final assembly. The project also contemplated the hardware architecture for improving the data acquisition and communication among the machines and databases, the data treatment units, and the human interfaces. The resulting system gives feedback to the operator when deviations or potential errors are detected so that the quality issues are recognized and can be amended in advance, thereby reducing the quality cost.
doi_str_mv 10.3390/s24237783
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ba820ef694145468536eb7deec77e44</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819956934</galeid><doaj_id>oai_doaj_org_article_3ba820ef694145468536eb7deec77e44</doaj_id><sourcerecordid>A819956934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-24a58e5cbfd16dc0fcfcbe697c9bbd83db1b99ccaf49b8b72487e8a6c5efaa43</originalsourceid><addsrcrecordid>eNpdksluFDEYhC0EImHgwAuglriQwwRv7eUCCmEbKRIccre8_B486rGD3Y0ET59uJowS5IOt8ueyyyqEXhJ8zpjGbxvllEmp2CN0Sjjla0UpfnxvfYKetbbDmDLG1FN0wrRQglF8it59TNs02iH9sWMquSuxs7nb5DC1sSY7dN9r8dBaF0vtPoCtKW8XLUx-4Z-jJ9EODV7czSt0_fnT9eXX9dW3L5vLi6u1Z4KPa8ptr6D3LgYigsfRR-9AaOm1c0Gx4IjT2nsbuXbKScqVBGWF7yFay9kKbQ62odidualpb-tvU2wyf4VSt8bWMfkBDHNWUQxRaE54z4XqmQAnA4CXEvji9f7gdTO5PQQPeax2eGD6cCenH2ZbfhlCBOd69luhN3cOtfycoI1mn5qHYbAZytQMI1xoIiVe0Nf_obsy1Tx_1UJxMiftyUydH6itnROkHMt8sZ9HgH3yJUNMs36hiNa90GzJcHY44GtprUI8Pp9gs1TCHCsxs6_u5z2S_zrAbgG8wLFW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144172451</pqid></control><display><type>article</type><title>Digitalization of an Industrial Process for Bearing Production</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Rodriguez-Fortun, Jose-Manuel ; Alvarez, Jorge ; Monzon, Luis ; Salillas, Ricardo ; Noriega, Sergio ; Escuin, David ; Abadia, David ; Barrutia, Aitor ; Gaspar, Victor ; Romeo, Jose Antonio ; Cebrian, Fernando ; Del-Hoyo-Alonso, Rafael</creator><creatorcontrib>Rodriguez-Fortun, Jose-Manuel ; Alvarez, Jorge ; Monzon, Luis ; Salillas, Ricardo ; Noriega, Sergio ; Escuin, David ; Abadia, David ; Barrutia, Aitor ; Gaspar, Victor ; Romeo, Jose Antonio ; Cebrian, Fernando ; Del-Hoyo-Alonso, Rafael</creatorcontrib><description>The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelligence (AI) and data treatment, have open up a wide range of possibilities for improving the quality of the production systems in diverse industrial fields. The present paper describes the automatizing process performed in a production line for high-quality bearings. The actuation considered new sensing elements at the machine level and the treatment of the information, fusing the different sources in order to detect quality defects in the grinding process (waviness, burns) and monitoring the state of the tool. At a supervision level, an AI model has been developed for monitoring the complete line and compensating deviations in the dimension of the final assembly. The project also contemplated the hardware architecture for improving the data acquisition and communication among the machines and databases, the data treatment units, and the human interfaces. The resulting system gives feedback to the operator when deviations or potential errors are detected so that the quality issues are recognized and can be amended in advance, thereby reducing the quality cost.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24237783</identifier><identifier>PMID: 39686320</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accelerometers ; Accuracy ; Acoustics ; Algorithms ; Analysis ; Artificial intelligence ; Bearings ; burns ; Digital technology ; digitalization ; grinding ; Grinding tools ; Industry 4.0 ; machine learning ; Manufacturing ; Process controls ; Product quality ; Quality control ; Real time ; Sensors ; waviness</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.24 (23), p.7783</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-24a58e5cbfd16dc0fcfcbe697c9bbd83db1b99ccaf49b8b72487e8a6c5efaa43</cites><orcidid>0000-0001-9128-3074 ; 0000-0003-2755-5500 ; 0000-0003-1369-4745 ; 0000-0002-4031-9281 ; 0009-0000-2196-0666 ; 0000-0002-0945-9921 ; 0000-0002-6005-3863 ; 0000-0003-2062-8092 ; 0000-0001-8080-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144172451/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144172451?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39686320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez-Fortun, Jose-Manuel</creatorcontrib><creatorcontrib>Alvarez, Jorge</creatorcontrib><creatorcontrib>Monzon, Luis</creatorcontrib><creatorcontrib>Salillas, Ricardo</creatorcontrib><creatorcontrib>Noriega, Sergio</creatorcontrib><creatorcontrib>Escuin, David</creatorcontrib><creatorcontrib>Abadia, David</creatorcontrib><creatorcontrib>Barrutia, Aitor</creatorcontrib><creatorcontrib>Gaspar, Victor</creatorcontrib><creatorcontrib>Romeo, Jose Antonio</creatorcontrib><creatorcontrib>Cebrian, Fernando</creatorcontrib><creatorcontrib>Del-Hoyo-Alonso, Rafael</creatorcontrib><title>Digitalization of an Industrial Process for Bearing Production</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelligence (AI) and data treatment, have open up a wide range of possibilities for improving the quality of the production systems in diverse industrial fields. The present paper describes the automatizing process performed in a production line for high-quality bearings. The actuation considered new sensing elements at the machine level and the treatment of the information, fusing the different sources in order to detect quality defects in the grinding process (waviness, burns) and monitoring the state of the tool. At a supervision level, an AI model has been developed for monitoring the complete line and compensating deviations in the dimension of the final assembly. The project also contemplated the hardware architecture for improving the data acquisition and communication among the machines and databases, the data treatment units, and the human interfaces. The resulting system gives feedback to the operator when deviations or potential errors are detected so that the quality issues are recognized and can be amended in advance, thereby reducing the quality cost.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Bearings</subject><subject>burns</subject><subject>Digital technology</subject><subject>digitalization</subject><subject>grinding</subject><subject>Grinding tools</subject><subject>Industry 4.0</subject><subject>machine learning</subject><subject>Manufacturing</subject><subject>Process controls</subject><subject>Product quality</subject><subject>Quality control</subject><subject>Real time</subject><subject>Sensors</subject><subject>waviness</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksluFDEYhC0EImHgwAuglriQwwRv7eUCCmEbKRIccre8_B486rGD3Y0ET59uJowS5IOt8ueyyyqEXhJ8zpjGbxvllEmp2CN0Sjjla0UpfnxvfYKetbbDmDLG1FN0wrRQglF8it59TNs02iH9sWMquSuxs7nb5DC1sSY7dN9r8dBaF0vtPoCtKW8XLUx-4Z-jJ9EODV7czSt0_fnT9eXX9dW3L5vLi6u1Z4KPa8ptr6D3LgYigsfRR-9AaOm1c0Gx4IjT2nsbuXbKScqVBGWF7yFay9kKbQ62odidualpb-tvU2wyf4VSt8bWMfkBDHNWUQxRaE54z4XqmQAnA4CXEvji9f7gdTO5PQQPeax2eGD6cCenH2ZbfhlCBOd69luhN3cOtfycoI1mn5qHYbAZytQMI1xoIiVe0Nf_obsy1Tx_1UJxMiftyUydH6itnROkHMt8sZ9HgH3yJUNMs36hiNa90GzJcHY44GtprUI8Pp9gs1TCHCsxs6_u5z2S_zrAbgG8wLFW</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Rodriguez-Fortun, Jose-Manuel</creator><creator>Alvarez, Jorge</creator><creator>Monzon, Luis</creator><creator>Salillas, Ricardo</creator><creator>Noriega, Sergio</creator><creator>Escuin, David</creator><creator>Abadia, David</creator><creator>Barrutia, Aitor</creator><creator>Gaspar, Victor</creator><creator>Romeo, Jose Antonio</creator><creator>Cebrian, Fernando</creator><creator>Del-Hoyo-Alonso, Rafael</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9128-3074</orcidid><orcidid>https://orcid.org/0000-0003-2755-5500</orcidid><orcidid>https://orcid.org/0000-0003-1369-4745</orcidid><orcidid>https://orcid.org/0000-0002-4031-9281</orcidid><orcidid>https://orcid.org/0009-0000-2196-0666</orcidid><orcidid>https://orcid.org/0000-0002-0945-9921</orcidid><orcidid>https://orcid.org/0000-0002-6005-3863</orcidid><orcidid>https://orcid.org/0000-0003-2062-8092</orcidid><orcidid>https://orcid.org/0000-0001-8080-7696</orcidid></search><sort><creationdate>20241205</creationdate><title>Digitalization of an Industrial Process for Bearing Production</title><author>Rodriguez-Fortun, Jose-Manuel ; Alvarez, Jorge ; Monzon, Luis ; Salillas, Ricardo ; Noriega, Sergio ; Escuin, David ; Abadia, David ; Barrutia, Aitor ; Gaspar, Victor ; Romeo, Jose Antonio ; Cebrian, Fernando ; Del-Hoyo-Alonso, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-24a58e5cbfd16dc0fcfcbe697c9bbd83db1b99ccaf49b8b72487e8a6c5efaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Bearings</topic><topic>burns</topic><topic>Digital technology</topic><topic>digitalization</topic><topic>grinding</topic><topic>Grinding tools</topic><topic>Industry 4.0</topic><topic>machine learning</topic><topic>Manufacturing</topic><topic>Process controls</topic><topic>Product quality</topic><topic>Quality control</topic><topic>Real time</topic><topic>Sensors</topic><topic>waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Fortun, Jose-Manuel</creatorcontrib><creatorcontrib>Alvarez, Jorge</creatorcontrib><creatorcontrib>Monzon, Luis</creatorcontrib><creatorcontrib>Salillas, Ricardo</creatorcontrib><creatorcontrib>Noriega, Sergio</creatorcontrib><creatorcontrib>Escuin, David</creatorcontrib><creatorcontrib>Abadia, David</creatorcontrib><creatorcontrib>Barrutia, Aitor</creatorcontrib><creatorcontrib>Gaspar, Victor</creatorcontrib><creatorcontrib>Romeo, Jose Antonio</creatorcontrib><creatorcontrib>Cebrian, Fernando</creatorcontrib><creatorcontrib>Del-Hoyo-Alonso, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Fortun, Jose-Manuel</au><au>Alvarez, Jorge</au><au>Monzon, Luis</au><au>Salillas, Ricardo</au><au>Noriega, Sergio</au><au>Escuin, David</au><au>Abadia, David</au><au>Barrutia, Aitor</au><au>Gaspar, Victor</au><au>Romeo, Jose Antonio</au><au>Cebrian, Fernando</au><au>Del-Hoyo-Alonso, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digitalization of an Industrial Process for Bearing Production</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>7783</spage><pages>7783-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelligence (AI) and data treatment, have open up a wide range of possibilities for improving the quality of the production systems in diverse industrial fields. The present paper describes the automatizing process performed in a production line for high-quality bearings. The actuation considered new sensing elements at the machine level and the treatment of the information, fusing the different sources in order to detect quality defects in the grinding process (waviness, burns) and monitoring the state of the tool. At a supervision level, an AI model has been developed for monitoring the complete line and compensating deviations in the dimension of the final assembly. The project also contemplated the hardware architecture for improving the data acquisition and communication among the machines and databases, the data treatment units, and the human interfaces. The resulting system gives feedback to the operator when deviations or potential errors are detected so that the quality issues are recognized and can be amended in advance, thereby reducing the quality cost.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39686320</pmid><doi>10.3390/s24237783</doi><orcidid>https://orcid.org/0000-0001-9128-3074</orcidid><orcidid>https://orcid.org/0000-0003-2755-5500</orcidid><orcidid>https://orcid.org/0000-0003-1369-4745</orcidid><orcidid>https://orcid.org/0000-0002-4031-9281</orcidid><orcidid>https://orcid.org/0009-0000-2196-0666</orcidid><orcidid>https://orcid.org/0000-0002-0945-9921</orcidid><orcidid>https://orcid.org/0000-0002-6005-3863</orcidid><orcidid>https://orcid.org/0000-0003-2062-8092</orcidid><orcidid>https://orcid.org/0000-0001-8080-7696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-12, Vol.24 (23), p.7783
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ba820ef694145468536eb7deec77e44
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Accelerometers
Accuracy
Acoustics
Algorithms
Analysis
Artificial intelligence
Bearings
burns
Digital technology
digitalization
grinding
Grinding tools
Industry 4.0
machine learning
Manufacturing
Process controls
Product quality
Quality control
Real time
Sensors
waviness
title Digitalization of an Industrial Process for Bearing Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digitalization%20of%20an%20Industrial%20Process%20for%20Bearing%20Production&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Rodriguez-Fortun,%20Jose-Manuel&rft.date=2024-12-05&rft.volume=24&rft.issue=23&rft.spage=7783&rft.pages=7783-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24237783&rft_dat=%3Cgale_doaj_%3EA819956934%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-24a58e5cbfd16dc0fcfcbe697c9bbd83db1b99ccaf49b8b72487e8a6c5efaa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144172451&rft_id=info:pmid/39686320&rft_galeid=A819956934&rfr_iscdi=true